Journal of Industrial Microbiology & Biotechnology

, Volume 36, Issue 10, pp 1249–1256 | Cite as

Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota

  • Mariana B. Carvalho
  • Isabel Martins
  • Maria C. Leitão
  • Helga Garcia
  • Cátia Rodrigues
  • Vitória San Romão
  • Iain McLellan
  • Andrew Hursthouse
  • Cristina Silva Pereira
Original Paper

Abstract

Pentachlorophenol (PCP) bioremediation by the fungal strains amongst the cork-colonising community has not yet been analysed. In this paper, the co- and direct metabolism of PCP by each of the 17 fungal species selected from this community were studied. Using hierarchical data analysis, the isolates were ranked by their PCP bioremediation potential. Fifteen isolates were able to degrade PCP under co-metabolic conditions, and surprisingly Chrysonilia sitophila, Trichoderma longibrachiatum, Mucor plumbeus, Penicillium janczewskii and P. glandicola were able to directly metabolise PCP, leading to its complete depletion from media. PCP degradation intermediates are preliminarily discussed. Data emphasise the significance of these fungi to have an interesting potential to be used in PCP bioremediation processes.

Keywords

Pentachlorophenol (PCP) Bioremediation Ascomycetes Zygomycetes Cork 

Abbreviations

PCP

Pentachlorophenol

HQ

Hydroquinone

CHQ

Chlorohydroquinone

TeCHQ

Tetrachlorohydroquinone

DCBQ

2,6-Dichloro-1,4-benzoquinone

TeCBQ

Tetrachloro-1,4-benzoquinone

PCA

Pentachloroanisole

References

  1. 1.
    Alvarez-Rodriguez ML, Lopez-Ocana L, Lopez-Coronado JM, Rodriguez E, Martinez MJ, Larriba G, Coque JJR (2002) Cork taint of wines: role of the filamentous fungi isolated from cork in the formation of 2,4,6-trichloroanisole by O-methylation of 2,4,6-trichlorophenol. Appl Environ Microbiol 68(12):5860–5869PubMedCrossRefGoogle Scholar
  2. 2.
    Basílio MC, Gaspar R, Silva Pereira C, San Romão MV (2006) Penicillium glabrum cork colonising isolates—preliminary analysis of their genomic similarity. Rev Iberoam Micol 23(3):151–154PubMedCrossRefGoogle Scholar
  3. 3.
    Borazjani H, Ferguson B, Hendrix F, McFarland L, McGinnis G, Pope D, Strobel D, Wagner J (1989) Cladosporium sp., a potential fungus for bioremediation of wood-treating wastes. Abs Papers Am Chem Soc 197:80-ENVRGoogle Scholar
  4. 4.
    Carlile M, Watkinson S, Gooday G (2001) The fungi. Elsevier Academic Press, Amsterdam, p 588Google Scholar
  5. 5.
    Cserjesi AJ (1967) Adaptation of fungi to pentachlorophenol and its biodegradation. Can J Microbiol 13(9):1243–1245PubMedCrossRefGoogle Scholar
  6. 6.
    Cserjesi AJ, Johnson EL (1972) Methylation of pentachlorophenol by Trichoderma virgatum. Can J Microbiol 18(1):45–47PubMedGoogle Scholar
  7. 7.
    Czaplicka M (2004) Sources and transformations of chlorophenols in the natural environment. Sci Total Environ 322(1–3):21–39PubMedGoogle Scholar
  8. 8.
    Danesh P, Velez Caldas F, Figueiredo Marques J, San Romao M (1997) Mycobiota in Portuguese ‘normal’ and ‘green’ cork throughout the manufacturing process of stoppers. J Appl Microbiol 82(6):689–694PubMedCrossRefGoogle Scholar
  9. 9.
    Fahr K, Wetzstein HG, Grey R, Schlosser D (1999) Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol Lett 175(1):127–132PubMedCrossRefGoogle Scholar
  10. 10.
    Johnson ME, Szekely A, Warnock DW (1998) In vitro activity of voriconazole, itraconazole and amphotericin B against filamentous fungi. J Antimicrob Chemother 42:741–745PubMedCrossRefGoogle Scholar
  11. 11.
    Lacey J (1973) The air spora of a Portuguese cork factory. Ann Occup Hyg 16(3):223–230PubMedCrossRefGoogle Scholar
  12. 12.
    Lamar RT, Larsen MJ, Kirk TK (1990) Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Appl Environ Microbiol 56(11):3519–3526PubMedGoogle Scholar
  13. 13.
    Lyytikäinen M, Sormunen A, Peräniemi S, Kukkonen J (2001) Environmental fate and bioavailabilty of wood preservatives in freshwater sediments near an old sawmill site. Chemosphere 44(3):341–350PubMedCrossRefGoogle Scholar
  14. 14.
    Maggi L, Mazzoleni V, Fumi MD, Salinas MR (2008) Transformation ability of fungi isolated from cork and grape to produce 2,4,6-trichloroanisole from 2,4,6-trichlorophenol. Food Addit Contam 25(3):265–269CrossRefGoogle Scholar
  15. 15.
    McLellan L, Carvalho M, Silva Pereira C, Hursthouse A, Morrison C, Tatner P, Martins I, Romão MVS, Leitão M (2007) The environmental behaviour of polychlorinated phenols and its relevance to cork forest ecosystems: a review. J Environ Monitor 9:1055–1063CrossRefGoogle Scholar
  16. 16.
    Mileski GJ, Bumpus JA, Jurek MA, Aust SD (1988) Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54(12):2885–2889PubMedGoogle Scholar
  17. 17.
    Oliveira AC, Peres CM, Correia Pires JM, Silva Pereira C, Vitorino S, Figueiredo Marques JJ, Barreto Crespo MT, San Romao MV (2003) Cork stoppers industry: defining appropriate mould colonization. Microbiol Res 158(2):117–124PubMedCrossRefGoogle Scholar
  18. 18.
    Prak S, Gunata Z, Guiraud JP, Schorr-Galindo S (2007) Fungal strains isolated from cork stoppers and the formation of 2,4,6-trichloroanisole involved in the cork taint of wine. Food Microbiol 24:271–280PubMedCrossRefGoogle Scholar
  19. 19.
    Rabinovich ML, Bolobova AV, Vasil’chenko LG (2004) Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl Biochem Microbiol 40(1):1–17CrossRefGoogle Scholar
  20. 20.
    Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413PubMedGoogle Scholar
  21. 21.
    Reddy GVB, Gelpke MDS, Gold MH (1998) Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: involvement of reductive dechlorination. J Bacteriol 180(19):5159–5164PubMedGoogle Scholar
  22. 22.
    Seigle-Murandi F, Guiraud P, Steiman R, Benoitguyod JL (1992) Phenoloxidase production and vanillic acid metabolism by Zygomycetes. Microbiologica 15(2):157–165PubMedGoogle Scholar
  23. 23.
    Seigle-Murandi F, Steiman R, Benoitguyod JL, Guiraud P (1993) Fungal degradation of pentachlorophenol by micromycetes. J Biotechnol 30(1):27–35CrossRefGoogle Scholar
  24. 24.
    Seigle-Murandi F, Toe A, Benoitguyod JL, Steiman R, Kadri M (1995) Depletion of pentachlorophenol by Deuteromycetes isolated from soil. Chemosphere 31(2):2677–2686CrossRefGoogle Scholar
  25. 25.
    Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 26:9–283Google Scholar
  26. 26.
    Serra R, Peterson S, Venancio A (2008) Multilocus sequence identification of Penicillium species in cork bark during plank preparation for the manufacture of stoppers. Res Microbiol 159(3):178–186PubMedGoogle Scholar
  27. 27.
    Silva Pereira C, Marques JJF, San Romão MV (2000) Cork taint in wine: scientific knowledge and public perception—a critical review. Crit Rev Microbiol 26(3):147–162PubMedCrossRefGoogle Scholar
  28. 28.
    Silva Pereira C, Pires A, Valle MJ, Vilas-Boas L, Figueiredo Marques JJ, San Romão MV (2000) Role of Chrysonilia sitophila on the quality for cork stoppers for sealing wine bottle. J Ind Microbiol Biotech 24:256–261Google Scholar
  29. 29.
    Silva Pereira C, Soares GAM, Oliveira AC, Rosa ME, Pereira H, Moreno N, Romão MVS (2006) Effect of fungal colonization on mechanical performance of cork. Int Biodeter Biodegr 57(4):244–250CrossRefGoogle Scholar
  30. 30.
    Soares GAM, Basílio MC, Tenreiro R, San Romão MV (2003) Diversity of Penicillium spp. colonising cork slabs: a classical and molecular approach. In: Lima N, Smith D (eds) Biological resource centres and the use of microbes. Micoteca da Universidade do Minho, Braga, pp 161–170Google Scholar
  31. 31.
    Solyanikova IP, Golovleva LA (2004) Bacterial degradation of chlorophenols: pathways, biochemical and genetic aspects. J Environ Sci Health Part B 39(3):333–351CrossRefGoogle Scholar
  32. 32.
    Szewczyk R, Bernat P, Milczarek K, Dlugonski J (2003) Application of microscopic fungi isolated from polluted industrial areas for polycyclic aromatic hydrocarbons and pentachlorophenol reduction. Biodegradation 14(1):1–8PubMedCrossRefGoogle Scholar
  33. 33.
    Taylor TR, Tucker T, Whalen MM (2005) Persistent inhibition of human natural killer cell function by ziram and pentachlorophenol. Environ Toxicol 20(4):418–424PubMedCrossRefGoogle Scholar
  34. 34.
    Tomasini A, Flores V, Cortes D, Barrios-Gonzalez J (2001) An isolate of Rhizopus nigricans capable of tolerating and removing pentachlorophenol. World J Microbiol Biotechnol 17(2):201–205CrossRefGoogle Scholar
  35. 35.
    Tortella GR, Diez MC, Duran N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31(4):197–212PubMedCrossRefGoogle Scholar
  36. 36.
    van Leeuwen JA, Nicholson BC, Hayes KP, Mulcahy DE (1997) Degradation of chlorophenolic compounds by Trichoderma harzianum isolated from Lake Bonney, South-Eastern South Australia. Environ Toxicol Water Qual 12(4):335–342CrossRefGoogle Scholar
  37. 37.
    Wong AS, Crosby DG (1981) Photo-decomposition of pentachlorophenol in water. J Agric Food Chem 29(1):125–130CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  • Mariana B. Carvalho
    • 1
  • Isabel Martins
    • 1
  • Maria C. Leitão
    • 1
  • Helga Garcia
    • 1
  • Cátia Rodrigues
    • 1
  • Vitória San Romão
    • 1
    • 2
    • 3
  • Iain McLellan
    • 4
  • Andrew Hursthouse
    • 4
  • Cristina Silva Pereira
    • 1
    • 2
  1. 1.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  2. 2.IBETOeirasPortugal
  3. 3.EVN, Estação Vitivinícola NacionalDois PortosPortugal
  4. 4.School of Engineering and ScienceUniversity of the West of ScotlandPaisleyUK

Personalised recommendations