Journal of Industrial Microbiology & Biotechnology

, Volume 36, Issue 9, pp 1215–1224 | Cite as

Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production

  • Claudio Fuentes-Grünewald
  • Esther Garcés
  • Sergio Rossi
  • Jordi Camp
Original Paper

Abstract

Microalgae are microscopic heterotrophic–autotrophic photosynthesizing organisms with enormous potential as a source of biofuel. Dinoflagellates, a class of microalgae, contain large amounts of high-quality lipids, the principal component of fatty acid methyl esters. The biotic characteristics of the dinoflagellate species Karlodinium veneficum include a growth rate of 0.14 day−1, a wet biomass of 16.4 g/L, a growth period of approximately 30 days, and an approximate 97% increase in fatty acid content during the transition from exponential phase to stationary phase. These parameters make K. veneficum a suitable choice as a bioresource for biodiesel production. Similarly, two other species were also determined to be appropriate for biodiesel production: the Dinophyceae Alexandrium andersoni and the Raphidophyte Heterosigma akashiwo.

Keywords

Biodiesel Dinoflagellates Karlodinium veneficum Lipids Microalgae 

References

  1. 1.
    Palligarnai T, Vasudevan PT, Briggs M (2008) Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430. doi:10.1007/s10295-008-0312-2 CrossRefGoogle Scholar
  2. 2.
    Lian PH (2007) Potential habitat and biodiversity losses from intensified biodiesel feedstock production. Ecol Conserv Biol 21:1373–1375Google Scholar
  3. 3.
    Puppán D (2002) Environmental evaluation of biofuels. Periodica polytechnica. Ser Soc Man Sci 10(1):95–116Google Scholar
  4. 4.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi:10.1016/j.biotechadv.2007.02.001 PubMedCrossRefGoogle Scholar
  5. 5.
    U.S. Department of Energy, Energy Information Administration (2006) International Energy Outlook (Dept. of Energy, Washington, DC), DOE Publ. No. EIA-0484Google Scholar
  6. 6.
    Chang EH, Yang SS (2003) Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot Bull Acad Sin 44(1):43–52Google Scholar
  7. 7.
    Hsueh HT, Chu H, Yu ST (2007) A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by a hot spring and marine algae. Chemosphere 66(5):878–886. doi:10.1016/j.chemosphere.2006.06.022 PubMedCrossRefGoogle Scholar
  8. 8.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131. doi:10.1016/j.tibtech.2007.12.002 PubMedCrossRefGoogle Scholar
  9. 9.
    Yanqun L, Horsman M, Nan W, Christopher QL, Dubois-Calero N (2008) Biofuels from microalgae. Am Chem Soc 24:815–820Google Scholar
  10. 10.
    Sheehan J, Dunahay T, Benemann J, Roesler P (1998) A look back at the US Department of energy’s aquatic species program: biodiesel from algae. U.S. Department of Energy National Renewable Energy Laboratory, GoldenGoogle Scholar
  11. 11.
    Qiang H, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. doi:10.1111/j.1365-313X.2008.03492.x CrossRefGoogle Scholar
  12. 12.
    Clement A, Aguilera A, Fuentes-Grünewald C (2002) Análisis de marea roja en Archipiélago de Chiloe, contingencia verano 2002. In: 22nd Congreso de Ciencias del Mar. Valdivia, ChileGoogle Scholar
  13. 13.
    Basterretxea G, Garcés E, Jordi A, Masó M, Tintoré J (2005) Breeze conditions as a favoring mechanism of Alexandrium taylori blooms at a Mediterranean beach. Estuar Coast Shelf Sci 32:1–12Google Scholar
  14. 14.
    Guillard RRL, Hargraves PE (1993) Stichocrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236Google Scholar
  15. 15.
    Guillard RRL (1973) Division rates. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 289–312Google Scholar
  16. 16.
    Ruiz J, Antequera T, Andres AI, Petron MJ, Muriel E (2004) Improvement of a solid phase extraction method for analysis of lipid fractions in muscle foods. Anal Chim Acta 520:201–205CrossRefGoogle Scholar
  17. 17.
    Russell JM, Werne JP (2007) The use of solid phase extraction columns in fatty acid purification. Org Geochem 38:48–51CrossRefGoogle Scholar
  18. 18.
    Cooney MJ, Elsey D, Jameson D, Raleigh B (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68:639–642PubMedCrossRefGoogle Scholar
  19. 19.
    Fábregas J, Otero A, Dominguez A, Patiño M (2001) Growth rate of the microalgae Tetraselmis suecica changes the biochemical composition of Artemia species. Mar Biotechnol 3:256–263PubMedCrossRefGoogle Scholar
  20. 20.
    Fábregas J, Abalde J, Herrero C, Cid A (1991) Yields in biomass and chemical constituents of four commercial important marine microalgae with different culture media. Aquac Eng 10:99–110CrossRefGoogle Scholar
  21. 21.
    Stolte W, Garcés E (2006) Ecological aspects of harmful algal in situ population growth rates. Ecolological Studies, vol 189. Springer, Berlin HeidelbergGoogle Scholar
  22. 22.
    Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalgae Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764–771Google Scholar
  23. 23.
    Mansour P, Volkman J, Blackburn S (2003) The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate, Gymnodinium sp. in batch culture. Phytochemistry 63:145–153PubMedCrossRefGoogle Scholar
  24. 24.
    Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996) Effects of harvest stage and light in biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 34:712–721Google Scholar
  25. 25.
    Hallegraeff GM, Nichols PD, Volkman JK, Blackburn S, Everit D (1999) Pigments, fatty acids, and sterols of the toxic dinoflagellate Gymnodinium catenatum. J Phycol 27:591–599CrossRefGoogle Scholar
  26. 26.
    Mooney DB, Nichols PD, De Salas MF, Hallegraeff GM (2007) Lipid, fatty acid, and sterols composition of eight species of kareniaceae (Dinophyta): chemotaxonomy and putative lipid phycotoxins. J Phycol 43:101–111CrossRefGoogle Scholar
  27. 27.
    Mathews CK, Van Holde KE (2000) Bioquimica, 2nd edn. MacGraw-Hill/Interamericana, MadridGoogle Scholar
  28. 28.
    Gao C, Xiong W, Zhang Y, Yuang W, Wu Q (2008) Rapid quantification of lipids in microalgae by time domain nuclear resonance. J Microbiol Methods 75:437–440PubMedCrossRefGoogle Scholar
  29. 29.
    Ramos MJ, Fernández, CM, Casas Abraham, et al (2008) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268Google Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  • Claudio Fuentes-Grünewald
    • 1
    • 2
  • Esther Garcés
    • 1
  • Sergio Rossi
    • 2
  • Jordi Camp
    • 1
  1. 1.Institut de Ciències del Mar/Consejo Superior de Investigaciones Científicas (ICM/CSIC)BarcelonaSpain
  2. 2.Instituto de Ciencias y Tecnología AmbientalUniversidad Autónoma de BarcelonaBellaterraSpain

Personalised recommendations