Advertisement

Journal of Industrial Microbiology & Biotechnology

, Volume 36, Issue 9, pp 1189–1197 | Cite as

Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater

  • Simon Vainberg
  • Charles W. Condee
  • Robert J. SteffanEmail author
Original Paper

Abstract

Chlorinated solvents such as perchloroethylene (PCE) and trichloroethylene (TCE) continue to be significant groundwater contaminants throughout the USA. In many cases efficient bioremediation of aquifers contaminated with these chemicals requires the addition of exogenous microorganisms, specifically members of the genus Dehalococcoides (DHC). This process is referred to as bioaugmentation. In this study a fed-batch fermentation process was developed for producing large volumes (to 3,200 L) of DHC-containing consortia suitable for treating contaminated aquifers. Three consortia enriched from three different sites were grown anaerobically with sodium lactate as an electron donor and PCE or TCE as an electron acceptor. DHC titers in excess of 1011 DHC/L could be reproducibly obtained at all scales tested and with all three of the enrichment cultures. The mean specific DHC growth rate for culture SDC-9™ was 0.036 ± 0.005 (standard error, SE)/h with a calculated mean doubling time of 19.3 ± 2.7 (SE) h. Finished cultures could be concentrated approximately tenfold by membrane filtration and stored refrigerated (4°C) for more that 40 days without measurable loss of activity. Dehalogenation of PCE by the fermented cultures was affected by pH with no measurable activity at pH <5.0.

Keywords

Bioremediation Bioaugmentation PCE TCE Fermentation Dehalococcoides Dechlorination SDC-9 Groundwater 

Notes

Acknowledgments

The authors thank Randi Rothmel, Antonio Soto, Kevin McClay, and Paul Hedman for excellent analytical support. This project was supported by the Environmental Security Technology Certification Program (ESTCP) project number CU-0515. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the US Army Corp. of Engineers, Humphreys Engineer Center Support Activity.

References

  1. 1.
    Cupples AM, Spormann AM, McCarty PL (2003) Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69:953–959. doi: 10.1128/AEM.69.2.953-959.2003 PubMedCrossRefGoogle Scholar
  2. 2.
    Cupples AM, Spormann AM, McCarty PL (2004) Comparative evaluation of chloroethene dechlorination to ethane by Dehalococcoides-like microorganisms. Environ Sci Technol 38:4768–4774. doi: 10.1021/es049965z PubMedCrossRefGoogle Scholar
  3. 3.
    Cupples AM, Spormann AM, McCarty PL (2004) Vinyl chloride and cis-dichloroethene dechlorination kinetics and microorganism growth under substrate limiting conditions. Environ Sci Technol 38:1102–1107. doi: 10.1021/es0348647 PubMedCrossRefGoogle Scholar
  4. 4.
    Duhamel M, Mo K, Edwards EA (2004) Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70:5538–5545. doi: 10.1128/AEM.70.9.5538-5545.2004 PubMedCrossRefGoogle Scholar
  5. 5.
    Ellis DE, Lutz EJ, Odom JM, Ronald J, Buchanan J, Bartlett C, Lee MD, Harkness MR, Deweerd KA (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260. doi: 10.1021/es990638e CrossRefGoogle Scholar
  6. 6.
    Griffin BM, Tiedje JM, Löffler FE (2004) Anaerobic microbial reductive dechlorination of tetrachloroethene (PCE) to predominately trans-1, 2 dichloroethene. Environ Sci Technol 38:4300–4303. doi: 10.102/es035439g PubMedCrossRefGoogle Scholar
  7. 7.
    He J, Ritalahti KM, Aiello MR, Löffler FE (2003) Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as Dehalococcoides species. Appl Environ Microbiol 69:996–1003. doi: 10.1128/AEM.69.2.996-1003.2003 PubMedCrossRefGoogle Scholar
  8. 8.
    He J, Ritalahti KM, Yang KL, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65. doi: 10.1038/nature01717 PubMedCrossRefGoogle Scholar
  9. 9.
    He J, Holmes V, Lee PKH, Alvarez-Cohen L (2007) Influence of vitamin B12 and co-cultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73:2847–2853. doi: 10.1128/AEM.02574-06 PubMedCrossRefGoogle Scholar
  10. 10.
    He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE (2005) Isolation and characterization of Dehalococcoides sp. Strain FL2, a trichloroethene (TCE) and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7:1442–1450. doi: 10.1111/j.1462-2920.2005.00830.x PubMedCrossRefGoogle Scholar
  11. 11.
    Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Microbiol 68:485–495. doi: 10.1128/AEM.68.2.485-495.2002 CrossRefGoogle Scholar
  12. 12.
    Holliger C, Wohlfarth G, Diekert G (1999) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398. doi: 10.1111/j.1574-6976.1998.tb00377.x CrossRefGoogle Scholar
  13. 13.
    Holliger C, Schumacher W (1994) Reductive dehalogenation as a respiratory process. Antonie Van Leeuwenhoek 66:239–246. doi: 10.1007/BF00871642 PubMedCrossRefGoogle Scholar
  14. 14.
    Lee MD, Odom JM, Buchanan RJ Jr (1998) New perspectives on microbial dehalogenation of chlorinated solvents: insights from the field. Annu Rev Microbiol 52:423–452. doi: 10.1146/annurev.micro.52.1.423 PubMedCrossRefGoogle Scholar
  15. 15.
    Lendvay JM, Löffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL Jr, Barcelona MJ, Petrovskis E, Tiedje JM, Adriaens P (2002) Bioreactive barriers: bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431. doi: 10.102/es025985u CrossRefGoogle Scholar
  16. 16.
    Löffler FE, Cole JR, Ritalahti KM, Tiedje JM (2003) Diversity of dechlorinating bacteria. In: Häggblom MM, Bossert ID (eds) Dehalogenation: microbial processes and environmental applications. Kluwer Academic Press, New York, pp 53–87. doi:  10.1007/0-306-48011-5_3
  17. 17.
    Löffler FE, Sun Q, Li J, Tiedje JM (2000) 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374. doi: 10.1128/AEM.66.4.1369-1374.2000 PubMedCrossRefGoogle Scholar
  18. 18.
    Löffler FE, Tiedje JM, Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65:4049–4056PubMedGoogle Scholar
  19. 19.
    Lu X, Wilson JT, Kampbell DH (2006) Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Res 40:3131–3140. doi: 10.1016/j.watres.2006.05.030 PubMedCrossRefGoogle Scholar
  20. 20.
    Lu X-X, Tao S, Bosma T, Gerritse J (2001) Characteristic hydrogen concentrations for various redox processes in batch study. J Environ Sci Health A 36:1725–1734. doi: 10.1081/ESE-100106254 CrossRefGoogle Scholar
  21. 21.
    Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116. doi: 10.1021/es0255711 PubMedCrossRefGoogle Scholar
  22. 22.
    Maymó-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65:3108–3113PubMedGoogle Scholar
  23. 23.
    Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571. doi: 10.1126/science.276.5318.1568 PubMedCrossRefGoogle Scholar
  24. 24.
    McCarty PL, Chu M-Y, Kitanidis PK (2006) Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater. Eur J Soil Biol 43:276–282. doi: 10.1016/j.ejsobi.2007.03.004 CrossRefGoogle Scholar
  25. 25.
    Moran MJ, Zogorski S (2007) Chlorinated solvents in groundwater of the United States. Environ Sci Technol 41:74–81. doi: 10.1021/es061553y PubMedCrossRefGoogle Scholar
  26. 26.
    Müller JA, Rosner BM, von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70:4880–4888. doi: 10.1128/AEM.70.8.4880-4888.2004 PubMedCrossRefGoogle Scholar
  27. 27.
    Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72:2765–2774. doi: 10.1128/AEM.72.4.2765-2774.2006 PubMedCrossRefGoogle Scholar
  28. 28.
    Schaefer CE, Condee CW, Vainberg S, Steffan RJ (2009) Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: comparison between batch and column experiments. Chemosphere 75:141–148. doi: 10.1016/j.chemosphere.2008.12.041 Google Scholar
  29. 29.
    Shelton DR, Tiedje JM (1984) General method for determining anaerobic biodegradation potential. Appl Environ Microbiol 47:850–857PubMedGoogle Scholar
  30. 30.
    Smidt H, de Vos WM (2004) Anaerobic microbiol dehalogenation. Annu Rev Microbiol 58:43–73. doi: 10.1146/annurev.micro.58.030603.123600 PubMedCrossRefGoogle Scholar
  31. 31.
    Sung Y, Ritalahti KM, Apkarian RP, Löffler (2006) Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl Environ Microbiol 72:1980–1987. doi: 10.1128/AEM.72.3.1980-1987.2006 PubMedCrossRefGoogle Scholar
  32. 32.
    U.S. EPA (1998) U.S. EPA test methods for evaluating solid waste, physical/chemical methods SW846, 3rd edn. Revision 5, 1998Google Scholar
  33. 33.
    Westrick JJ, Mello JW, Thomas RF (2004) The groundwater supply survey. J Am Water Works Assoc 76:52–59Google Scholar
  34. 34.
    Yang Y, McCarty PL (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 32:3591–3597. doi: 10.1021/es991410u Google Scholar
  35. 35.
    Zhang J, Andrew AP, Chiu PC (2006) 1,1-Dichloroethene as a predominant intermediate of microbial trichloroethene reduction. Environ Sci Technol 40:1830–1836Google Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  • Simon Vainberg
    • 1
  • Charles W. Condee
    • 1
  • Robert J. Steffan
    • 1
    Email author
  1. 1.Shaw Environmental, Inc.LawrencevilleUSA

Personalised recommendations