Advertisement

Mass spectrometric screening of transcriptional regulators involved in antibiotic biosynthesis in Streptomyces coelicolor A3(2)

  • Sung-Soo Park
  • Yung-Hun Yang
  • Eunjung Song
  • Eun-Jung Kim
  • Woo Seong Kim
  • Jae Kyung Sohng
  • Hei Chan Lee
  • Kwang Kyoung Liou
  • Byung-Gee KimEmail author
Original Paper

Abstract

DNA-affinity capture assay (DACA) coupled with liquid chromatography–tandem mass spectrometry analysis was applied to identify the transcriptional regulators involved in the biosynthesis of actinorhodin (Act) and undecylprodigiosin (Red) in Streptomyces coelicolor. The aim of this analysis was to determine the specific transcriptional regulators binding to the promoter region of actII-ORF4 or redD. The results of the DACA, as the first screening tool, identified eight proteins, including AdpA, as candidate regulators binding to those promoter regions. To show the direct physical relationship between the regulators and promoters, we purified four regulators over-expressed in soluble form in Escherichia coli and subjected these to an electrophoretic mobility shift assay (EMSA). The results of the EMSA appeared to be compatible with the DACA results for those regulators. A null mutant was also constructed for one of these regulators, SCO6008, which showed early Red production and quite delayed Act production in R5 medium. These observations suggest that DACA can be widely used to find new regulators and that the regulator SCO6008 may be involved in antibiotic production through its binding to the redD promoter.

Keywords

Actinorhodin DNA affinity capture assay Streptomyces coelicolor Transcriptional regulator Undecylprodigiosin 

Notes

Acknowledgments

The authors thank Prof. Jung-Hye Roe for providing S. coelicolor A3(2) strain M145 and cosmids, and Prof. Yeo Joon Yoon for providing the plasmid pSE34. We also thank Profs. Ji-Sook Hahn, Seung R. Paik, and Eung-Soo Kim for their comments on the manuscript. This work was supported by a grant funded by the Korea government (MOST) (No. R0A-2007-000-10007-0), Republic of Korea.

References

  1. 1.
    Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147. doi: 10.1038/417141a PubMedCrossRefGoogle Scholar
  2. 2.
    Brian P, Riggle PJ, Santos RA, Champness WC (1996) Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system. J Bacteriol 178:3221–3231PubMedGoogle Scholar
  3. 3.
    Chakraburtty R, Bibb M (1997) The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J Bacteriol 179:5854–5861PubMedGoogle Scholar
  4. 4.
    Chater KF (2001) Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex? Curr Opin Microbiol 4:667–673. doi: 10.1016/S1369-5274(01)00267-3 PubMedCrossRefGoogle Scholar
  5. 5.
    Corre C, Song L, O’Rourke S, Chater KF, Challis GL (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci USA 105:17510–17515. doi: 10.1073/pnas.0805530105 PubMedCrossRefGoogle Scholar
  6. 6.
    Distler J, Ebert A, Mansouri K, Pissowotzki K, Stockmann M, Piepersberg W (1987) Gene cluster for streptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Res 15:8041–8056. doi: 10.1093/nar/15.19.8041 PubMedCrossRefGoogle Scholar
  7. 7.
    Geistlich M, Losick R, Turner JR, Rao RN (1992) Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaciens. Mol Microbiol 6:2019–2029. doi: 10.1111/j.1365-2958.1992.tb01374.x PubMedCrossRefGoogle Scholar
  8. 8.
    Gramajo HC, Takano E, Bibb MJ (1993) Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 7:837–845. doi: 10.1111/j.1365-2958.1993.tb01174.x PubMedCrossRefGoogle Scholar
  9. 9.
    Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546. doi: 10.1073/pnas.0337542100 PubMedCrossRefGoogle Scholar
  10. 10.
    Huang J, Lih CJ, Pan KH, Cohen SN (2001) Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev 15:3183–3192. doi: 10.1101/gad.943401 PubMedCrossRefGoogle Scholar
  11. 11.
    Huang J, Shi J, Molle V, Sohlberg B, Weaver D, Bibb MJ, Karoonuthaisiri N, Lih CJ, Kao CM, Buttner MJ, Cohen SN (2005) Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 58:1276–1287PubMedCrossRefGoogle Scholar
  12. 12.
    Hugouvieux-Cotte-Pattat N, Condemine G, Nasser W, Reverchon S (1996) Regulation of pectinolysis in Erwinia chrysanthemi. Annu Rev Microbiol 50:213–257. doi: 10.1146/annurev.micro.50.1.213 PubMedCrossRefGoogle Scholar
  13. 13.
    Hung TV, Ishida K, Parajuli N, Liou K, Lee HC, Sohng JK (2006) Enhanced clavulanic acid production in Streptomyces clavuligerus NRRL3585 by overexpression of regulatory genes. Biotechnol Bioprocess Eng 11:116–120. doi: 10.1007/BF02931894 CrossRefGoogle Scholar
  14. 14.
    Ichinose K, Bedford DJ, Tornus D, Bechthold A, Bibb MJ et al (1998) The granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tu22: sequence analysis and expression in a heterologous host. Chem Biol 5:647–659. doi: 10.1016/S1074-5521(98)90292-7 PubMedCrossRefGoogle Scholar
  15. 15.
    Ishizuka H, Horinouchi S, Kieser HM, Hopwood DA, Beppu T (1992) A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. J Bacteriol 174:7585–7594PubMedGoogle Scholar
  16. 16.
    Karp PD, Riley M, Saier M, Paulsen IT, Collado-Vides J et al (2002) The EcoCyc database. Nucleic Acids Res 30:56–58. doi: 10.1093/nar/30.1.56 PubMedCrossRefGoogle Scholar
  17. 17.
    Kieser T, Bibb MJ, Buttner MJ, Chater K, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Centre, NorwichGoogle Scholar
  18. 18.
    Kim DJ, Huh JH, Yang YY, Kang CM, Lee IH et al (2003) Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J Bacteriol 185:592–600. doi: 10.1128/JB.185.2.592-600.2003 PubMedCrossRefGoogle Scholar
  19. 19.
    McArthur M, Bibb MJ (2008) Manipulating and understanding antibiotic production in Streptomyces coelicolor A3(2) with decoy oligonucleotides. Proc Natl Acad Sci USA 105:1020–1025. doi: 10.1073/pnas.0710724105 PubMedCrossRefGoogle Scholar
  20. 20.
    Malpartida F, Niemi J, Navarrete R, Hopwood DA (1990) Cloning and expression in a heterologous host of the complete set of genes for biosynthesis of the Streptomyces coelicolor antibiotic undecylprodigiosin. Gene 93:91–99. doi: 10.1016/0378-1119(90)90141-D PubMedCrossRefGoogle Scholar
  21. 21.
    Mao Y, Varoglu M, Sherman DH (1999) Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol 6:251–263. doi: 10.1016/S1074-5521(99)80040-4 PubMedCrossRefGoogle Scholar
  22. 22.
    Martinez A, Kolvek SJ, Hopke J, Yip CL, Osburne MS (2005) Environmental DNA fragment conferring early and increased sporulation and antibiotic production in Streptomyces species. Appl Environ Microbiol 71:1638–1641. doi: 10.1128/AEM.71.3.1638-1641.2005 PubMedCrossRefGoogle Scholar
  23. 23.
    Ohnishi Y, Kameyama S, Onaka H, Horinouchi S (1999) The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 34:102–111. doi: 10.1046/j.1365-2958.1999.01579.x PubMedCrossRefGoogle Scholar
  24. 24.
    Park SS, Ko BJ, Kim BG (2005) Mass spectrometric screening of transcriptional regulators using DNA affinity capture assay. Anal Biochem 344:152–154. doi: 10.1016/j.ab.2005.05.019 PubMedCrossRefGoogle Scholar
  25. 25.
    Praillet T, Reverchon S, Nasser W (1997) Mutual control of the PecS/PecM couple, two proteins regulating virulence-factor synthesis in Erwinia chrysanthemi. Mol Microbiol 24:803–814. doi: 10.1046/j.1365-2958.1997.3901755.x PubMedCrossRefGoogle Scholar
  26. 26.
    Reche PA (2000) Lipoylating and biotinylating enzymes contain a homologous catalytic module. Protein Sci 9:1922–1929. doi: 10.1110/ps.9.10.1922 PubMedCrossRefGoogle Scholar
  27. 27.
    Reverchon S, Nasser W, Robert-Baudouy J (1994) pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. Mol Microbiol 11:1127–1139. doi: 10.1111/j.1365-2958.1994.tb00389.x PubMedCrossRefGoogle Scholar
  28. 28.
    Ricaud PM, Howard MJ, Roberts EL, Broadhurst RW, Perham RN (1996) Three-dimensional structure of the lipoyl domain from the dihydrolipoyl succinyltransferase component of the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli. J Mol Biol 264(1):179–190. doi: 10.1006/jmbi.1996.0632 PubMedCrossRefGoogle Scholar
  29. 29.
    Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9:670–675. doi: 10.1038/embor.2008.83 PubMedCrossRefGoogle Scholar
  30. 30.
    Sezonov G, Possoz C, Friedmann A, Pernodet JL, Guerineau M (2000) KorSA from the Streptomyces integrative element pSAM2 is a central transcriptional repressor: target genes and binding sites. J Bacteriol 182:1243–1250. doi: 10.1128/JB.182.5.1243-1250.2000 PubMedCrossRefGoogle Scholar
  31. 31.
    Stutzman-Engwall KJ, Otten SL, Hutchinson CR (1992) Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J Bacteriol 174:144–154PubMedGoogle Scholar
  32. 32.
    Susstrunk U, Pidoux J, Taubert S, Ullmann A, Thompson CJ (1998) Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol Microbiol 30:33–46. doi: 10.1046/j.1365-2958.1998.01033.x PubMedCrossRefGoogle Scholar
  33. 33.
    Takano E, Tao M, Long F, Bibb MJ, Wang L et al (2003) A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol Microbiol 50:475–486. doi: 10.1046/j.1365-2958.2003.03728.x PubMedCrossRefGoogle Scholar
  34. 34.
    Umeyama T, Lee PC, Ueda K, Horinouchi S (1999) An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145(Pt 9):2281–2292PubMedGoogle Scholar
  35. 35.
    Vujaklija D, Horinouchi S, Beppu T (1993) Detection of an A-factor-responsive protein that binds to the upstream activation sequence of strR, a regulatory gene for streptomycin biosynthesis in Streptomyces griseus. J Bacteriol 175:2652–2661PubMedGoogle Scholar
  36. 36.
    Waki M, Nihira T, Yamada Y (1997) Cloning and characterization of the gene (farA) encoding the receptor for an extracellular regulatory factor (IM-2) from Streptomyces sp. strain FRI-5. J Bacteriol 179:5131–5137PubMedGoogle Scholar
  37. 37.
    Yamazaki H, Tomono A, Ohnishi Y, Horinouchi S (2004) DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol Microbiol 53:555–572. doi: 10.1111/j.1365-2958.2004.04153.x PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  • Sung-Soo Park
    • 1
    • 3
  • Yung-Hun Yang
    • 1
  • Eunjung Song
    • 1
  • Eun-Jung Kim
    • 1
  • Woo Seong Kim
    • 1
  • Jae Kyung Sohng
    • 2
  • Hei Chan Lee
    • 2
  • Kwang Kyoung Liou
    • 2
  • Byung-Gee Kim
    • 1
    Email author
  1. 1.School of Chemical and Biological Engineering, Institute of BioengineeringSeoul National UniversityKwanak-gu, SeoulKorea
  2. 2.Department of Pharmaceutical EngineeringSun Moon UniversityAsanKorea
  3. 3.Laboratory of Neurosciences, National Institute on Aging National Institutes of HealthBaltimoreUSA

Personalised recommendations