Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production

  • V. Achal
  • A. Mukherjee
  • P. C. Basu
  • M. Sudhakara Reddy
Original Paper


Phenotypic mutants of Sporosarcina pasteurii (previously known as Bacillus pasteurii) (MTCC 1761) were developed by UV irradiation to test their ability to enhance urease activity and calcite production. Among the mutants, Bp M-3 was found to be more efficient compared to other mutants and wild-type strain. It produced the highest urease activity and calcite production compared to other isolates. The production of extracellular polymeric substances and biofilm was also higher in this mutant than other isolates. Microbial sand plugging results showed the highest calcite precipitation by Bp M-3 mutant. Scanning electron micrography, energy-dispersive X-ray and X-ray diffraction analyses evidenced the direct involvement of bacteria in CaCO3 precipitation. This study suggests that calcite production by the mutant through biomineralization processes is highly effective and may provide a useful strategy as a sealing agent for filling the gaps or cracks and fissures in any construction structures.


Sporosarcina pasteurii (Bacillus pasteuriiUrease Calcite precipitation UV-induced mutants Biofilm Extracellular polymeric substances 


  1. 1.
    Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Ind Microbiol Biotechnol 36:433–438. doi:10.1007/s10295-008-0514-7 PubMedCrossRefGoogle Scholar
  2. 2.
    American Public Health Association (APHA) (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, WashingtonGoogle Scholar
  3. 3.
    Aono R, Ito M, Machida T (1999) Contribution of cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606PubMedGoogle Scholar
  4. 4.
    Bachmeier KL, Williams AE, Warmington JR, Bang SS (2002) Urease activity in microbiologically-induced calcite precipitation. J Biotechnol 93:171–181. doi:10.1016/S0168-1656(01)00393-5 PubMedCrossRefGoogle Scholar
  5. 5.
    Bang SS, Ramakrishnan V (2001) Microbiologically-enhanced crack remediation (MECR). In: Proceedings of the international symposium on industrial application of microbial genomes. Daegu, Korea, pp 3–13Google Scholar
  6. 6.
    Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 28:404–409. doi:10.1016/S0141-0229(00)00348-3 PubMedCrossRefGoogle Scholar
  7. 7.
    Burne RA, Chen RE (2001) Bacterial ureases in infectious diseases. Microbes Infect 2:533–542. doi:10.1016/S1286-4579(00)00312-9 CrossRefGoogle Scholar
  8. 8.
    Burne RA, Marquis RE (2000) Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193:1–6. doi:10.1111/j.1574-6968.2000.tb09393.x PubMedCrossRefGoogle Scholar
  9. 9.
    Cacchio P, Ercole C, Cappuccio G, Lepidi A (2003) Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil. Geomicrobiol J 20:85–99. doi:10.1080/01490450303883 CrossRefGoogle Scholar
  10. 10.
    Ciurli S, Marzadori C, Benini S, Deiana S, Gessa C (1996) Urease from the soil bacterium Bacillus pasteurii: immobilization on Ca-polygalacturonate. Soil Biol Biochem 28:811–817. doi:10.1016/0038-0717(96)00020-X CrossRefGoogle Scholar
  11. 11.
    De Jong JT, Fritzges MB, Nein K (2006) Microbial induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392. doi:10.1061/(ASCE)1090-0241(2006)132:11(1381) CrossRefGoogle Scholar
  12. 12.
    Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17:357–367. doi:10.1007/s10532-005-9006-x PubMedCrossRefGoogle Scholar
  13. 13.
    Ferris FG, Beveridge TJ, Fyfe WS (1986) Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature 320:609–611. doi:10.1038/320609a0 CrossRefGoogle Scholar
  14. 14.
    Ferris FG, Fyfe WS, Beveridge TJ (1987) Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem Geol 63:225–232. doi:10.1016/0009-2541(87)90165-3 CrossRefGoogle Scholar
  15. 15.
    Friedman LE, De Passerini Rossi BN, Messina MT, Franco MA (2001) Phenotype evaluation of Bordetella bronchiseptica cultures by urease activity and congo red affinity. Lett Appl Microbiol 33:285–290. doi:10.1046/j.1472-765X.2001.00997.x PubMedCrossRefGoogle Scholar
  16. 16.
    Fukumoto J, Yamamoto T, Tsuru D (1971) Process for producing detergent resisting alkaline protease. Can Pat 910:214Google Scholar
  17. 17.
    Gollapudi UK, Knutson CL, Bang SS, Islam MR (1995) A new method for controlling leaching through permeable channels. Chemosphere 30(4):695–705. doi:10.1016/0045-6535(94)00435-W CrossRefGoogle Scholar
  18. 18.
    Kawaguchi T, Decho AW (2002) A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J Cryst Growth 240:230–235. doi:10.1016/S0022-0248(02)00918-1 CrossRefGoogle Scholar
  19. 19.
    Lian B, Hu Q, Chen J, Ji J, Teng HH (2006) Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim Cosmochim Acta 70:5522–5535. doi:10.1016/j.gca.2006.08.044 CrossRefGoogle Scholar
  20. 20.
    Lopez-Garcia P, Kazmierczak J, Benzerara K, Kempe S, Guyot F, Moreira D (2005) Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles 9:263–274. doi:10.1007/s00792-005-0457-0 PubMedCrossRefGoogle Scholar
  21. 21.
    McKay DS, Gibson EK Jr, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273:924–930. doi:10.1126/science.273.5277.924 PubMedCrossRefGoogle Scholar
  22. 22.
    Merz-Preiss M, Riding R (1999) Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes. Sediment Geol 126(1–4):103–124. doi:10.1016/S0037-0738(99)00035-4 CrossRefGoogle Scholar
  23. 23.
    Mobley HLT, Hausinger RP (1989) Microbial ureases: significance, regulation and molecular characterisation. Microbiol Rev 53:85–108PubMedGoogle Scholar
  24. 24.
    Morikawa M, Kagihiro S, Haruki M, Takano K, Branda S, Kolter R, Kanaya S (2006) Biofilm formation by a Bacillus subtilis strain that produces γ-polyglutamate. Microbiology 152:2801–2807. doi:10.1099/mic.0.29060-0 PubMedCrossRefGoogle Scholar
  25. 25.
    Mukherjee A, Reddy MS, Achal V (2008) A novel additive for building materials and methods of preparation & application there of. Indian Patent Application No. 2191/DEL/2008Google Scholar
  26. 26.
    Natarajan KR (1995) Kinetic study of the enzyme urease from Dolichos biflorus. J Chem Educ 72:556–557CrossRefGoogle Scholar
  27. 27.
    Nemati M, Voordouw G (2003) Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enz Microb Tech 33:635–642. doi:10.1016/S0141-0229(03)00191-1 CrossRefGoogle Scholar
  28. 28.
    Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using microorganisms. Am Concr Inst Mater J 98:3–9Google Scholar
  29. 29.
    Rivadeneyra MA, Delgado G, Ramos-Cormenzana A, Delgado R (1997) Precipitation of carbonates by Deleya halophila in liquid media: pedological implications in saline soils. Arid Soil Res Rehabil 11:35–49Google Scholar
  30. 30.
    Rivadeneyra MA, Delgado G, Ramos-Cormenzana A, Delgado R (1998) Biomineralisation of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res Microbiol 149:277–287. doi:10.1016/S0923-2508(98)80303-3 PubMedCrossRefGoogle Scholar
  31. 31.
    Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Munoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus—induced carbonate biomineralization. Appl Environ Microbiol 69(4):2182–2193. doi:10.1128/AEM.69.4.2182-2193.2003 PubMedCrossRefGoogle Scholar
  32. 32.
    Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77–81. doi:10.1038/35065071 PubMedCrossRefGoogle Scholar
  33. 33.
    Silver S, Toth K, Scribner H (1975) Facilitated transport of calcium by cells and subcellular membranes of Bacillus subtilis and Escherichia coli. J Bacteriol 12:880–885Google Scholar
  34. 34.
    Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31(11):1563–1571. doi:10.1016/S0038-0717(99)00082-6 CrossRefGoogle Scholar
  35. 35.
    Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209. doi:10.1146/annurev.micro.56.012302.160705 PubMedCrossRefGoogle Scholar
  36. 36.
    Stumm W, Morgan JJ (1981) Aquatic chemistry. Wiley, NYGoogle Scholar
  37. 37.
    Tiano P, Biagiotti L, Mastromei G (1999) Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods 36:138–145. doi:10.1016/S0167-7012(99)00019-6 CrossRefGoogle Scholar
  38. 38.
    Tsuneda S, Jung J, Hayashi H, Aikawa H, Hirata A, Sasaki H (2003) Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. Colloid Surf B 29:181–188. doi:10.1016/S0927-7765(02)00188-1 CrossRefGoogle Scholar
  39. 39.
    Wright DT, Oren A (2005) Non-photosynthetic bacteria and the formation of carbonates and evaporates through time. Geomicrobiol J 22:27–53. doi:10.1080/01490450590922532 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  • V. Achal
    • 1
  • A. Mukherjee
    • 1
  • P. C. Basu
    • 2
  • M. Sudhakara Reddy
    • 1
  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia
  2. 2.Atomic Energy Regulatory BoardMumbaiIndia

Personalised recommendations