Skip to main content
Log in

Medium optimization for keratinase production in hair substrate by a new Bacillus subtilis KD-N2 using response surface methodology

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Culture medium for keratinase production from hair substrate by a new Bacillus subtilis strain, KD-N2, was optimized. Effects of culture conditions on keratinase production were tested, and optimal results were obtained with 10% inocula (v/v), 16 g/L hair substrate, an initial pH value of 6.5 and a culture volume of 20 mL. Several carbon sources (sucrose, cornflour) and nitrogen sources (yeast extract, tryptone and peptone) had positive effects on keratinase production, with sucrose giving optimal results. To improve keratinase yield, statistically based experimental designs were applied to optimize the culture medium. Fractional factorial design (FFD) experiments showed that MgSO4 and K2HPO4 were the most significant factors affecting keratinase production. Further central composite design (CCD) experiments indicated that the optimal MgSO4 and K2HPO4 concentrations were 0.91 and 2.38 g/L, respectively. Using an optimized fermentation medium (g/L: NaCl 1.0, CaCl2 0.05, KH2PO4 0.7, sucrose 3, MgSO4 0.91, K2HPO4 2.38), keratinase activity increased to 125 U/mL, an approximate 1.7-fold increase over the previous activity (75 U/mL). Human hair was degraded during the submerged cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8a,b

Similar content being viewed by others

References

  1. Onifade AA, Al-Sane NA, Al-Musallam AA, Al-Zarban S (1998) Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol 66:1–11. doi:10.1016/S0960-8524(98)00033-9

    Article  CAS  Google Scholar 

  2. Williams CM, Richter CS, Mackenzie JM, Shih JCH (1990) Isolation, identification, and characterization of a feather-degrading bacterium. Appl Environ Microbiol 56:1509–1515

    PubMed  CAS  Google Scholar 

  3. Riffel A, Lucas FS, Heeb P, Brandelli A (2003) Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch Microbiol 179:258–265. doi:10.1007/s00203-003-0525-8

    PubMed  CAS  Google Scholar 

  4. Lucas FS, Broennimann O, Febbraro I, Heeb P (2003) High diversity among feather-degrading bacteria from a dry meadow soil. Microb Ecol 45:282–290. doi:10.1007/s00248-002-2032-x

    Article  PubMed  CAS  Google Scholar 

  5. El-Naghy MA, El-Ktatny MS, Fadl-Allah EM, Nazeer WW (1998) Degradation of chicken feathers by Chrysosporium georgiae. Mycopathologia 143:77–84. doi:10.1016/j.procbio.2004.09.006

    Article  PubMed  CAS  Google Scholar 

  6. Gradišar H, Kern S, Friedrich J (2000) Keratinase of Doratomyces microsporus. Appl Microbiol Biotechnol 53:196–200. doi:10.1007/s002530050008

    Article  PubMed  Google Scholar 

  7. Friedrich J, Gradišar H, Vrecl M, Pogacnik A (2005) In vitro degradation of porcine skin epidermis by a fungal keratinase of Doratomyces microsporus. Enzyme Microb Technol 36:455–460. doi:10.1016/j.enzmictec.2004.09.015

    Article  CAS  Google Scholar 

  8. Ignatova Z, Gousterova A, Spassov G, Nedkov P (1999) Isolation and partial characterization of extracellular keratinase from a wool degrading thermophilic actinomycete strain thermoactinomyces candidus. Can J Microbiol 45:217–222. doi:10.1139/cjm-45-3-217

    Article  PubMed  CAS  Google Scholar 

  9. Gushterova A, Vasileva-Tonkova E, Dimova E, Nedkov P, Haertle T (2005) Keratinase production by newly isolated Antarctic actinomycete strains. World J Microbiol Biotechnol 21:831–834. doi:10.1007/s11274-004-2241-1

    Article  CAS  Google Scholar 

  10. Gousterova A, Braikova D, Goshev I, Christov P, Tishinov K, Vasileva-Tonkova E, Haertle T, Nedkov P (2005) Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Lett Appl Microbiol 40:335–340. doi:10.1111/j.1472-765X.2005.01692.x

    Article  PubMed  CAS  Google Scholar 

  11. Yu RJ, Harmon SR, Blank F (1968) Isolation and purification of an extracellular keratinase of Trichophyton mentagrophytes. J Bacteriol 96:1435–1436

    PubMed  CAS  Google Scholar 

  12. Vignardet C, Guillaumeb YC, Friedrich J, Millet J (1999) A first order experimental design to assess soluble proteins released by a new keratinase from Doratomyces microsporus on human substrates. Int J Pharm 191:95–102. doi:10.1016/S0378-5173(99)00283-5

    Article  PubMed  CAS  Google Scholar 

  13. Wang JJ, Swaisgood HE, Shih JCH (2003) Production and characterization of bio-immobilized keratinase in proteolysis and keratinolysis. Enzyme Microb Technol 32:812–819. doi:10.1016/S0141-0229(03)00060-7

    Article  CAS  Google Scholar 

  14. Suntornsuk W, Tongjun J, Onnim P, Oyama H, Ratanakanokchai K, Kusamran T, Oda K (2005) Purification and characterization of keratinase from a thermotolerant feather-degrading bacterium. J Microbiol Biotechnol 21:1111–1117. doi:10.1007/s11274-005-0078-x

    Article  CAS  Google Scholar 

  15. Ramnani P, Gupta R (2004) Optimization of medium composition for keratinase production on feather by Bacillus licheniformis RG1 using statistical methods involving response surface methodology. Biotechnol Appl Biochem 40:191–196

    Article  PubMed  CAS  Google Scholar 

  16. Nam GW, Lee DW, Lee HS, Lee NJ, Kim BC, Choe EA, Hwang JK, Suhartono MT, Pyun YR (2002) Native feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase producing thermophilic anaerobe. Arch Microbiol 178:538–547. doi:10.1007/s00203-002-0489-0

    Article  PubMed  CAS  Google Scholar 

  17. Friedrich AB, Antranikian G (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order thermotogales. Appl Environ Microbiol 62:2875–2882

    PubMed  CAS  Google Scholar 

  18. Cai CG, Lou BG, Zheng XD (2008) Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis. J Zhejiang Univ Sci B 9:60–67. doi:10.1631/jzus.B061620

    Article  PubMed  CAS  Google Scholar 

  19. Gupta R, Ramnani P (2006) Microbial keratinase and their prospective application: an overview. Appl Microbiol Biotechnol 70:21–33. doi:10.1007/s00253-005-0239-8

    Article  PubMed  CAS  Google Scholar 

  20. Williams CM, Lee CG, Garlich JD, Shih JCH (1991) Evaluation of a bacterial feather fermentation product, feather lysate, as a feed protein. Poult Sci 70:85–94

    CAS  Google Scholar 

  21. Grazziotin A, Pimentel FA, de Jong EV, Brandelli A (2006) Nutritional improvement of feather protein by treatment with microbial keratinase. Animal Feed Sci Technol 126:135–144. doi:10.1016/j.anifeedsci.2005.06.002

    Article  CAS  Google Scholar 

  22. Langeveld JPM, Wang JJ, Van de Wiel DFM, Shih GC, Garssen GJ, Bossers A, Shih JCH (2003) Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J Infect Dis 188:1782–1789. doi:10.1086/379664

    Article  PubMed  CAS  Google Scholar 

  23. Macedo AJ, da Silva WOB, Gava R, Driemerier D, Henriques JAP, Termignoni C (2005) Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilites. Appl Environ Microbiol 71:594–596. doi:10.1128/AEM.71.1.594-596.2005

    Article  PubMed  CAS  Google Scholar 

  24. Anbu P, Gopinath SCB, Hilda A, Priya TL, Annadurai G (2005) Purification of keratinase from poultry farm isolate-Scopulariopsis brevicaulis and statistical optimization of enzyme activity. Enzyme Microb Technol 36:639–647. doi:10.1016/j.enzmictec.2004.07.019

    Article  CAS  Google Scholar 

  25. Kiviharju K, Leisola M, Eerikäinen T (2004) Optimization of Streptomyces peucetius var. caesius N47 cultivation and ɛ-rhodomycinone production using experimental designs and response surface methods. J Ind Microbiol Biotechnol 31:475–481. doi:10.1007/s10295-004-0172-3

    Article  PubMed  CAS  Google Scholar 

  26. Chu WH (2007) Optimization of extracellular alkaline protease production from species of Bacillus. J Ind Microbiol Biotechnol 34:241–245. doi:10.1007/s10295-006-0192-2

    Article  PubMed  CAS  Google Scholar 

  27. Liu C, Sun ZT, Du JH, Wang J (2008) Response surface optimization of fermentation conditions for producing xylanase by Aspergillus niger SL-05. J Ind Microbiol Biotechnol 35:703–711. doi:10.1007/s10295-008-0330-0

    Article  PubMed  CAS  Google Scholar 

  28. Yamamura S, Morita Y, Hasan Q, Rao SR, Murakami Y, Yokoyama K, Tamiya E (2002) Characterization of a new keratin-degrading bacterium isolated from deer fur. J Biosci Bioeng 93:595–600. doi:10.1263/jbb.93.595

    PubMed  CAS  Google Scholar 

  29. Cai CG, Cheng JS, Qi JJ, Yin Y, Zheng XD (2008) Purification and characterization of keratinase from a new Bacillus subtilis strain. J Zhejiang Univ Sci B 9:713–720. doi:10.1631/jzus.B0820128

    Article  PubMed  CAS  Google Scholar 

  30. Wawrzkiewicz K, Lobarzewski J, Wolski T (1987) Intracellular keratinase of Trichophyton gallinae. J Med Vet Mycol 25:261–268. doi:10.1080/02681218780000601

    Article  PubMed  CAS  Google Scholar 

  31. Gradišar H, Friedrich J, Križaj I, Jerala R (2005) Similarities and specificities of fungal keratinolytic proteases: comparison of keratinase of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl Environ Microbiol 71:3420–3426. doi:10.1128/AEM.71.7.3420-3426.2005

    Article  PubMed  Google Scholar 

  32. Montgomery DC (1997) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  33. Maddox IS, Richert SH (1977) Use of response surface methodology for the rapid optimization of microbiological media. J Appl Bacteriol 43:197–204

    PubMed  CAS  Google Scholar 

  34. Santos RMDB, Firmino AA, de Sá CM, Felix CR (1996) Keratinolytic activity of Aspergillus fumigatus Fresenius. Curr Microbiol 33:364–370. doi:10.1007/s002849900129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, C., Zheng, X. Medium optimization for keratinase production in hair substrate by a new Bacillus subtilis KD-N2 using response surface methodology. J Ind Microbiol Biotechnol 36, 875–883 (2009). https://doi.org/10.1007/s10295-009-0565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0565-4

Keywords

Navigation