Continuous nisin production with bioengineered Lactococcus lactis strains

  • Ö. Şimşek
  • N. Akkoç
  • A. H. Çon
  • F. Özçelik
  • P. E. J. Saris
  • Mustafa Akçelik
Original Paper


Nisin production in continuous cultures of bioengineered Lactococcus lactis strains that incorporate additional immunity and regulation genes was studied. Highest nisin activities were observed at 0.2 h–1 dilution rate and 12.5 g l–1 fructose concentration for all strains. Recombinant strains were able to produce greater amounts of nisin at dilution rates below 0.3 h−1 compared to the control strain. However, this significant difference disappeared at dilution rates of 0.4 and 0.5 h–1. For the strains LL27, LAC338, LAC339, and LAC340, optimum conditions for nisin production were determined to be at 0.29, 0.26, 0.27, and 0.27 h–1 dilution rates and 11.95, 12.01, 11.63, and 12.50 g l–1 fructose concentrations, respectively. The highest nisin productivity, 496 IU ml–1 h–1, was achieved with LAC339. The results of this study suggest that low dilution rates stabilize the high specific nisin productivity of the bioengineered strains in continuous fermentation. Moreover, response surface methodology analysis showed that regulation genes yielded high nisin productivity at wide ranges of dilution rates and fructose concentrations.


Lactococcus lactis Nisin Regulation genes Immunity genes Continuous fermentation 



This work was supported by the grant from Ankara University, BİYEP program with the project entitled “Enhancing of Nisin Production Ability in Lactococcus lactis subsp. lactis”.


  1. 1.
    Carvajal-Zarrabal O, Nolasco-Hipólito C, Bujang KB, Ishizaki A (2009) Production of nisin Z using Lactococcus lactis IO-1 from hydrolyzed sago starch. J Ind Microbiol Biotechnol 36:409–415. doi: 10.10007/s10295-008-0511-x PubMedCrossRefGoogle Scholar
  2. 2.
    Cheigh CI, Park H, Choi HJ, Pyun YR (2005) Enhanced nisin production by increasing genes involved in nisin Z biosynthesis in Lactococcus lactis subsp. lactis A164. Biotechnol Lett 27:155–160. doi: 10.1007/s10529-004-7661-3 PubMedCrossRefGoogle Scholar
  3. 3.
    Cotter DP, Draper LA, Lawton EM, McAuliffe Hill C, Ross RP (2006) Overproduction of wild type bioengineered derivatives of the lantibiotic lacticin 3147. Appl Environ Microbiol 72:4492–4496. doi: 10.1128/AEM.02543-05 PubMedCrossRefGoogle Scholar
  4. 4.
    D’Angio C, Beal C, Boquien CY, Corrieu G (1994) Influence of dilution rate and cell immobilization on plasmid stability during continuous cultures of recombinant strains of Lactococcus lactis subsp. lactis. J Biotechnol 34:87–95. doi: 10.1016/0168-1656(94)90169-4 PubMedCrossRefGoogle Scholar
  5. 5.
    de Rojas AH, Martinez B, Suarez JE, Rodriquez A (2004) Enhanced production of lactococcin 972 in chemostat cultures. Appl Microbiol Biotechnol 66:48–52. doi: 10.1007/s00253-004-1661-z PubMedCrossRefGoogle Scholar
  6. 6.
    de Vuyst L, Vandamme EJ (1992) Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J Gen Microbiol 138:571–578PubMedGoogle Scholar
  7. 7.
    de Vuyst L, Vandamme EJ (1993) Influence of the phosphorus and nitrogen source on nisin production in Lactococcus lactis subsp. lactis batch fermentations using a complex medium. Appl Microbiol Biotechnol 40:17–22CrossRefGoogle Scholar
  8. 8.
    Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin nisin. Antonie Van Leeuwenhoek 69:193–202. doi: 10.1007/BF00399424 PubMedCrossRefGoogle Scholar
  9. 9.
    Desjardins P, Meghrous J, Lacroix C (2001) Effect of aeration and dilution rate on nisin Z production during continuous fermentation with free and immobilized Lactococcus lactis UL719 in supplemented whey permeate. Int Dairy J 11:943–951. doi: 10.1016/S0958-6946(01)00128-5 CrossRefGoogle Scholar
  10. 10.
    Heinzmann S, Entian KD, Stein T (2006) Engineering Bacillus subtilis ATCC6633 for improved production of the lantibiotic subtilin. Appl Microbiol Biotechnol 69:532–536. doi: 10.1007/s00253-005-0023-9 PubMedCrossRefGoogle Scholar
  11. 11.
    Huang J, Lacroix C, Daba H, Simard RE (1996) Pediocin 5 production and plasmid stability during free and immobilized cell cultures of Pediococcus acidilactici UL5. J Appl Bacteriol 80:635–644PubMedGoogle Scholar
  12. 12.
    Kuipers OP, Beerthuyzen MM, de Ruyter PGGA, Luesink EJ, de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270:27299–27304. doi: 10.1074/jbc.270.45.27299 PubMedCrossRefGoogle Scholar
  13. 13.
    Kumar PKR, Schugerl K (1990) Immobilization of genetically engineered cells: a new strategy for higher stability. J Biotechnol 14:255–272. doi: 10.1016/0168-1656(90)90111-N PubMedCrossRefGoogle Scholar
  14. 14.
    Li C, Bai J, Cai Z, Ouyang F (2002) Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J Biotechnol 93:27–34. doi: 10.1016/S0168-1656(01)00377-7 PubMedCrossRefGoogle Scholar
  15. 15.
    Liu C, Hu B, Chen S, Glass RW (2007) Utilization of condensed distillers solubles as nutrient supplement for production of nisin and lactic acid from whey. Appl Biochem Biotechnol 136:875–884. doi: 10.1007/s12010-007-9104-9 CrossRefGoogle Scholar
  16. 16.
    Liu X, Chung KY, Yang ST, Yousef AE (2005) Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. Process Biochem 40:13–24. doi: 10.1016/j.procbio.2003.11.032 CrossRefGoogle Scholar
  17. 17.
    Matsusaki H, Endo N, Sonomoto K, Ishizaki A (1996) Lantibiotic nisin Z fermentative production by Lactococcus lactis IO-1: relationship between production of the lantibiotic and lactate and cell growth. Appl Microbiol Biotechnol 45:36–40. doi: 10.1007/s002530050645 PubMedCrossRefGoogle Scholar
  18. 18.
    Meghrous J, Huot E, Quittelier M, Petitdemange H (1992) Regulation of nisin biosynthesis by continuous cultures and by resting cells of Lactococcus lactis subsp. lactis. Res Microbiol 143:879–890. doi: 10.1016/0923-2508(92)90075-Y PubMedCrossRefGoogle Scholar
  19. 19.
    Parente E, Brienza C, Ricciardi A, Addario G (1997) Growth and bacteriocin production by Enterococcus faecium DPC1146 in batch and continuous culture. J Ind Microbiol Biotechnol 18:62–67. doi: 10.1038/sj.jim.2900368 PubMedCrossRefGoogle Scholar
  20. 20.
    Ra SR, Qiao M, Immonen T, Pujana I, Saris PEJ (1996) Genes responsible for nisin synthesis, regulation and immunity form a regulon of two operons and are induced by nisin in Lactococcus lactis N8. Microbiology 142:1282–1288CrossRefGoogle Scholar
  21. 21.
    Sayadi S, Nasri M, Barbotin JN, Thomas D (1989) Effect of environmental growth conditions on plasmid stability, plasmid copy number, and catechol 2, 3-dioxygenase activity in free and immobilized Escherichia coli cells. Biotechnol Bioeng 33:801–808. doi: 10.1002/bit.260330702 PubMedCrossRefGoogle Scholar
  22. 22.
    Şimşek Ö, Çon AH, Akkoç N, Saris PEJ, Akçelik M (2009) Influence of growth conditions on the nisin production of bioengineered Lactococcus lactis strains. J Ind Microbiol Biotechnol. doi: 10.1007/s10295-008-0517-4
  23. 23.
    Sonomoto K, Chinachoti N, Endo N, Ishizaki A (2000) Biosynthetic production of nisin Z by immobilized Lactococcus lactis IO-1. J Mol Catal B Enzym 10:325–334. doi: 10.1016/S1381-1177(00)00133-8 CrossRefGoogle Scholar
  24. 24.
    Tramer J, Fowler GG (1964) Estimation of nisin in foods. J Sci Food Agric 15:522–528. doi: 10.1002/jsfa.2740150802 CrossRefGoogle Scholar
  25. 25.
    Wirawan RE, Klesse NA, Jack RW, Tagg JR (2006) Molecular characterization of a novel nisin variant produced by Streptococcus uberis. Appl Environ Microbiol 72:1148–1156. doi: 10.1128/AEM.72.2.1148-1156.2006 PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  • Ö. Şimşek
    • 1
  • N. Akkoç
    • 2
  • A. H. Çon
    • 1
  • F. Özçelik
    • 3
  • P. E. J. Saris
    • 4
  • Mustafa Akçelik
    • 2
  1. 1.Department of Food Engineering, Engineering FacultyPamukkale UniversityDenizliTurkey
  2. 2.Department of Biology, Faculty of ScienceAnkara UniversityAnkaraTurkey
  3. 3.Department of Food Engineering, Engineering FacultyAnkara UniversityAnkaraTurkey
  4. 4.Department of Applied Chemistry and MicrobiologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations