Improved monoterpene biotransformation with Penicillium sp. by use of a closed gas loop bioreactor

  • Michael Pescheck
  • Marco Antonio Mirata
  • Bianca Brauer
  • Ulrich Krings
  • Ralf Günter Berger
  • Jens Schrader
Original Paper


A closed gas loop bioprocess was developed to improve fungal biotransformation of monoterpenes. By circulating monoterpene-saturated process gas, the evaporative loss of the volatile precursor from the medium during the biotransformation was avoided. Penicillium solitum, isolated from kiwi, turned out to be highly tolerant towards monoterpenes and to convert α-pinene to a range of products including verbenone, a valuable aroma compound. The gas loop was mandatory to reproduce the production of 35 mg L−1 verbenone obtained in shake flasks and also in the bioreactor. Penicillium digitatum DSM 62840 regioselectively converted (+)-limonene to the aroma compound α-terpineol, but shake flask cultures revealed a pronounced growth inhibition when initial concentrations exceeded 1.9 mM. In the bioreactor, toxic effects on P. digitatum during biotransformation were alleviated by starting a sequential feeding of non-toxic limonene portions after a preceding growth phase. Closing the precursor-saturated gas loop during the biotransformation allowed for an additional replenishment of limonene via the gas phase. The gas loop system led to a maximum α-terpineol concentration of 1,009 mg L−1 and an average productivity of 8–9 mg L−1 h−1 which represents a doubling of the respective values previously reported. Furthermore, a molar conversion yield of up to 63% was achieved.


Biotransformation Gas loop Penicillium α-Terpineol Verbenone 



This work was financially supported by Deutsche Bundesstiftung Umwelt, DBU (project no. AZ 13053/17).


  1. 1.
    Guentert M (2007) The flavour and fragrance industry—past, present, and future. In: Berger RG (ed) Flavours and fragrances chemistry, bioprocessing and sustainability. Springer, Berlin, pp 1–14Google Scholar
  2. 2.
    Soetaert W, Vandamme E (2006) The impact of industrial biotechnology. Biotechnol J 1:756–769. doi: 10.1002/biot.200600066 PubMedCrossRefGoogle Scholar
  3. 3.
    Cheetham PSJ (1991) The flavour and fragrance industry. In: Moses V, Cape RE (eds) Biotechnology, the science and the business. Harwood, NJ, pp 481–506Google Scholar
  4. 4.
    Demyttenaere JCR (2001) Biotransformation of terpenoids by microorganisms. In: Atta ur R (ed) Bioactive natural products (Part F). Elsevier, Oxford, pp 125–178CrossRefGoogle Scholar
  5. 5.
    Feygin H (2007) Topics in perfumery: creating effective natural fragrances. Perfum Flavor 5:26–29Google Scholar
  6. 6.
    Ohloff G (1994) Scent and fragrances. The fascination of odors and their chemical perspectives. Springer, BerlinGoogle Scholar
  7. 7.
    Braddock RJ (1998) Handbook of citrus by-products and processing technology. Wiley, New YorkGoogle Scholar
  8. 8.
    Agrawal R, Joseph R (2000) Bioconversion of α-pinene to verbenone by resting cells of Aspergillus niger. Appl Microbiol Biotechnol 53:335–337. doi: 10.1007/s002530050030 PubMedCrossRefGoogle Scholar
  9. 9.
    Tan Q, Day DF (1998) Organic co-solvent effects on the bioconversion of (R)-(+)-limonene to (R)-(+)-α-terpineol. Process Biochem 33:755–761. doi: 10.1016/S0032-9592(98)00046-6 CrossRefGoogle Scholar
  10. 10.
    Onken J, Berger RG (1999) Effects of R-(+)-limonene on submerged cultures of the terpene transforming basidiomycete Pleurotus sapidus. J Biotechnol 69:163–168. doi: 10.1016/S0168-1656(99)00040-1 PubMedCrossRefGoogle Scholar
  11. 11.
    Berger RG (1995) Aroma biotechnology. Springer, BerlinGoogle Scholar
  12. 12.
    von Wallbrunn A, Richnow HH, Neumann G, Meinhardt F, Heipieper HJ (2003) Mechanism of cis–trans isomerization of unsaturated fatty acids in Pseudomonas putida. J Bacteriol 185:1730–1733. doi: 10.1128/JB.185.5.1730-1733.2003 CrossRefGoogle Scholar
  13. 13.
    Kieboom J, Dennis JJ, Zylstra GJ, de Bont JA (1998) Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents. J Bacteriol 180:6769–6772PubMedGoogle Scholar
  14. 14.
    Schrader J (2007) Microbial flavour production. In: Berger RG (ed) Flavours and fragrances chemistry, bioprocessing and sustainability. Springer, Berlin, pp 509–573Google Scholar
  15. 15.
    Schrader J, Berger RG (2001) Biotechnological production of terpenoid flavor and fragrance compounds. In: Rehm HJ, Reed G (eds) Biotechnology. Wiley, Weinheim, pp 373–422CrossRefGoogle Scholar
  16. 16.
    van der Werf MJ, de Bont JAM, Leak DJ (1997) Opportunities in microbial biotransformation of monoterpenes. In: Scheper T (ed) Advances in biochemical engineering, biotechnology. Springer, Berlin, pp 147–177Google Scholar
  17. 17.
    Fichan I, Larroche C, Gros JB (1999) Water solubility, vapor pressure, and activity coefficients of terpenes and terpenoids. J Chem Eng Data 44:56–62. doi: 10.1021/je980070+ CrossRefGoogle Scholar
  18. 18.
    McIntosh TJ, Simon SA, MacDonald RC (1980) The organization of n-alkanes in lipid bilayers. Biochim Biophys Acta 597:445–463. doi: 10.1016/0005-2736(80)90219-9 PubMedCrossRefGoogle Scholar
  19. 19.
    Knobloch K, Weigand H, Weis N, Schwarm H-M, Vigenschow H (1986) Action of terpenoids on energy metabolism. In: Brunke E-J (ed) Progress in essential oil research. Walter de Gruyter, Berlin, pp 429–445Google Scholar
  20. 20.
    Bruce LJ, Daugulis AJ (1991) Solvent selection strategies for extractive biocatalysis. Biotechnol Prog 7:116–124. doi: 10.1021/bp00008a006 PubMedCrossRefGoogle Scholar
  21. 21.
    Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedGoogle Scholar
  22. 22.
    Abraham WR, Hoffmann HMR, Kieslich K, Reng G, Stumpf B (1985) Microbial transformations of some monoterpenoids and sesquiterpenoids. In: Porter R, Clark S (eds) Enzymes in organic synthesis Ciba Foundation Symposium 111. Pitman, London, pp 146–159CrossRefGoogle Scholar
  23. 23.
    Schäfer S, Schrader J, Sell D (2004) Oxygen uptake rate measurements to monitor the activity of terpene transforming fungi. Process Biochem 39:2221–2228. doi: 10.1016/j.procbio.2003.11.023 CrossRefGoogle Scholar
  24. 24.
    van Beilen JB, Holtackers R, Luscher D, Bauer U, Witholt B, Duetz WA (2005) Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl Environ Microbiol 71:1737–1744. doi: 10.1128/AEM.71.4.1737-1744.2005 PubMedCrossRefGoogle Scholar
  25. 25.
    Steinig GH, Livingston AG, Stuckey DC (2000) Bioconversion of hydrophobic compounds in a continuous closed-gas-loop bioreactor: feasibility assessment and epoxide production. Biotechnol Bioeng 70:553–563. doi: 10.1002/1097-0290(20001205)70:5<553::AID-BIT10>3.0.CO;2-2 PubMedCrossRefGoogle Scholar
  26. 26.
    Freitas dos Santos LM, Livingston AG (1993) A novel bioreactor system for the destruction of volatile organic compounds. Appl Microbiol Biotechnol 40:151–157. doi: 10.1007/BF00170444 CrossRefGoogle Scholar
  27. 27.
    Kaspera R, Krings U, Pescheck M, Sell D, Schrader J, Berger RG (2005) Regio- and stereoselective fungal oxyfunctionalisation of limonenes. Z Naturforsch 60(C):459–466Google Scholar
  28. 28.
    Taubert J, Krings U, Berger RG (2000) A comparative study on the disintegration of filamentous fungi. J Microbiol Methods 42:225–232. doi: 10.1016/S0167-7012(00)00194-9 PubMedCrossRefGoogle Scholar
  29. 29.
    Wu S, Krings U, Zorn H, Berger RG (2005) Volatile compounds from the fruiting bodies of beefsteak fungus Fistulina hepatica (Schaeffer: Fr.). Fr Food Chem 92:221–226. doi: 10.1016/j.foodchem.2004.07.013 CrossRefGoogle Scholar
  30. 30.
    Bauer B (2004) Biotechnologische Veredelung vonterpenhaltigen Reststofffraktionen der citrusverarbeitenden Industrie zu hochwertigen natürlichen Duft- und Aromastoffen. PhD thesis, Leipzig University Hannover, GermanyGoogle Scholar
  31. 31.
    Arctander S (1969) Perfume and flavor chemicals: (aroma chemicals). Monclair, NJGoogle Scholar
  32. 32.
    Moore RN, Golumbic C, Fisher GS (1956) Autoxidation of α-pinene. J Am Chem Soc 78:1173–1176. doi: 10.1021/ja01587a022 CrossRefGoogle Scholar
  33. 33.
    Duetz WA, Bouwmeester H, van Beilen JB, Witholt B (2003) Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol 61:269–277PubMedGoogle Scholar
  34. 34.
    van Dyk MS, van Rensburg E, Moleleki N (1998) Hydroxylation of (+)-limonene, (−)-α-pinene and (−)-β-pinene by a Hormonema sp. Biotechnol Lett 20:431–436. doi: 10.1023/A:1005399918647 CrossRefGoogle Scholar
  35. 35.
    Agrawal R, Deepika NU, Joseph R (1999) Strain improvement of Aspergillus sp. and Penicillium sp. by induced mutation for biotransformation of α-pinene to verbenol. Biotechnol Bioeng 63:249–252. doi: 10.1002/(SICI)1097-0290(19990420)63:2<249::AID-BIT14>3.0.CO;2-D PubMedCrossRefGoogle Scholar
  36. 36.
    Kieslich K, Abraham WR, Stumpf B, Thede B, Washausen P (1986) Transformations of terpenoids. In: Brunke E-H (ed) Progress in essential oil research. Walter de Gruyter, Berlin, pp 367–394Google Scholar
  37. 37.
    Stumpf B, Abraham W-R, Kieslich K (1983) Verfahren zur Herstellung von (+)-α-Terpineol durch mikrobiologische Umwandlung von Limonen. Germany patent P 3 243 090Google Scholar
  38. 38.
    Tan Q, Day DF (1998) Bioconversion of limonene to α-terpineol by immobilized Penicillium digitatum. Appl Microbiol Biotechnol 49:96–101. doi: 10.1007/s002530051143 CrossRefGoogle Scholar
  39. 39.
    Adams A, Demyttenaere JCR, De Kimpe N (2003) Biotransformation of (R)-(+)- and (S)-(−)-limonene to [α]-terpineol by Penicillium digitatum—investigation of the culture conditions. Food Chem 80:525–534. doi: 10.1016/S0308-8146(02)00322-9 CrossRefGoogle Scholar
  40. 40.
    Bicas JL, Barros FF, Wagner R, Godoy HT, Pastore GM (2008) Optimization of R-(+)-α-terpineol production by the biotransformation of R-(+)-limonene. J Ind Microbiol Biotechnol 35:1061–1070. doi: 10.1007/s10295-008-0383-0 PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  • Michael Pescheck
    • 1
  • Marco Antonio Mirata
    • 1
  • Bianca Brauer
    • 2
  • Ulrich Krings
    • 2
  • Ralf Günter Berger
    • 2
  • Jens Schrader
    • 1
  1. 1.Biochemical Engineering GroupDECHEMA e.V., Karl-Winnacker-InstitutFrankfurtGermany
  2. 2.Institut für LebensmittelchemieLeibniz Universität HannoverHannoverGermany

Personalised recommendations