Production of bioethanol by direct bioconversion of oil-palm industrial effluent in a stirred-tank bioreactor

  • Md. Zahangir Alam
  • Nassereldeen A. Kabbashi
  • S. Nahdatul I. S. Hussin
Original Paper

Abstract

The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO2%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32°C, pH of 6, and pO2 of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.

Keywords

Palm-oil mill effluent (POME) Bioethanol Direct bioconversion T. harzianum S. cerevisiae 

Notes

Acknowledgments

The authors are grateful to the Research Management Centre, IIUM, for approving a Research Grant IIUM Fundamental Research Grant (IFRG) as well as to the Department of Biotechnology Engineering for providing the lab facilities.

References

  1. 1.
    Habib MAB, Yusoff FM, Phang SM, Ang KJ, Mohamed S (1979) Nutritional values of chironomid larvae grown in palm oil mill effluent and algal culture. Aquaculture 158:95–105. doi: 10.1016/S0044-8486(97)00176-2 CrossRefGoogle Scholar
  2. 2.
    Wu TY, Mohammad AW, Jahim JM, Anuar N (2009) A holistic approach to managing palm oil mill effluent (POME): biotechnological advances in the sustainable reuse of POME. Biotechnol Adv 27:40–52. doi: 10.1016/j.biotechadv.2008.08.005 PubMedCrossRefGoogle Scholar
  3. 3.
    Wattanapenpaiboon N, Wahlqvist ML (2003) Phytonutrient deficiency: the place of palm fruit. Asia Pac J Clin Nutr 12:363–368PubMedGoogle Scholar
  4. 4.
    Hassan MA, Yacob S, Shirai Y, Hung Y-T (2004) Treatment of palm oil wastewaters. In: Wang LK, Hung Y, Lo HH, Yapijakis C (eds) Handbook of industrial and hazardous wastes treatment. Marcel Dekker, New York, pp 719–736Google Scholar
  5. 5.
    Yacob S, Hassan MA, Shirai Y, Wakisaka M, Subash S (2006) Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Sci Total Environ 366:187–196. doi: 10.1016/j.scitotenv.2005.07.003 PubMedCrossRefGoogle Scholar
  6. 6.
    Jamal P, Alam MZ, Salleh MRM, Nadzir MM (2005) Screening of microorganisms for citric acid production from palm oil mill effluent. Biotechnology 4:275–278CrossRefGoogle Scholar
  7. 7.
    Cheong WC, Hassan MA, Abdul Aziz S, Abdul Karim MI, Sabaratnam V, Shirai Y (2004) Treatment of palm oil mill effluent (POME) coupled with biohydrogen production. In: Proceedings of the Asia Water Conference, 1–2 April 2004, Kuala Lumpur, MalaysiaGoogle Scholar
  8. 8.
    Alam MZ, Muyibi SA, Mansor MF, Wahid R (2006) Removal of phenol by activated carbons prepared from palm oil mill effluent sludge. J Environ Sci (China) 18:446–452Google Scholar
  9. 9.
    Muniandy R (2000) Stone mastic asphalt with oil palm fibre for Malaysian road. In: Ariffin K, Hussein MA, Jainudeen MR, Singh N (eds) Inventions, innovative research and products. University Putra Malaysia, Kuala Lumpur, p 27Google Scholar
  10. 10.
    Nigam JN (1999) Continuous ethanol production from pineapple cannery waste. J Biotechnol 72:197–202. doi: 10.1016/S0168-1656(99)00106-6 CrossRefGoogle Scholar
  11. 11.
    Latif F, Rajoka MI (2001) Production of ethanol from xylitol from corn cobs by yeasts. Bioresour Technol 77:57–63. doi: 10.1016/S0960-8524(00)00134-6 PubMedCrossRefGoogle Scholar
  12. 12.
    Verma G, Nigam P, Singh D, Chaudhary K (2000) Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour Technol 72:261–266. doi: 10.1016/S0960-8524(99)00117-0 CrossRefGoogle Scholar
  13. 13.
    Suresh K, Sree NK, Rao LV (1999) Utilization of damaged sorghum and rice grains for ethanol production by simultaneous saccharification and fermentation. Bioresour Technol 68:301–304. doi: 10.1016/S0960-8524(98)00135-7 CrossRefGoogle Scholar
  14. 14.
    Kadam KL, McMillan JD (2002) Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour Technol 88:17–25. doi: 10.1016/S0960-8524(02)00269-9 CrossRefGoogle Scholar
  15. 15.
    Xin Z, Yinbo Q, Peiji G (1993) Acceleration of ethanol production from paper mill waste fiber by supplementation with β-glucosidase. Enzym Microb Technol 15:62–65. doi: 10.1016/0141-0229(93)90117-K CrossRefGoogle Scholar
  16. 16.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. doi: 10.1016/S0960-8524(01)00212-7 PubMedCrossRefGoogle Scholar
  17. 17.
    Ingram LO, Doran JB (1995) Conversion of cellulosic materials to ethanol. FEMS Microbiol Rev 16:235–241. doi: 10.1111/j.1574-6976.1995.tb00170.x CrossRefGoogle Scholar
  18. 18.
    Szczodrak J, Fiedurek J (1996) Technology for bioconversion of lignocellulosic biomass to ethanol. Biomass Bioenergy 10:367–375. doi: 10.1016/0961-9534(95)00114-X CrossRefGoogle Scholar
  19. 19.
    Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24. doi: 10.1016/S0168-1656(97)00073-4 PubMedCrossRefGoogle Scholar
  20. 20.
    Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375. doi: 10.1016/j.biombioe.2003.08.002 CrossRefGoogle Scholar
  21. 21.
    Mansor MF (2008) Process optimization on production of lignin peroxidase of sewage treatment plant sludge in a stirred tank bioreactor and its biodegradation of synthetic industrial dyes. Master’s Thesis, Faculty of Science, International Islamic University MalaysiaGoogle Scholar
  22. 22.
    Alam MZ, Muyibi SA, Wahid R (2008) Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge. Bioresour Technol 99:4709–4716. doi: 10.1016/j.biortech.2007.09.072 PubMedCrossRefGoogle Scholar
  23. 23.
    Molla AH, Fakhru’l-Razi A, Abd-Aziz S, Hanafi MM, Roychoudhury PK, Alam MZ (2002) A potential resource for bioconversion of domestic wastewater sludge. Bioresour Technol 85:263–272. doi: 10.1016/S0960-8524(02)00117-7 PubMedCrossRefGoogle Scholar
  24. 24.
    Alam MZ, Kabbashi NA, Mamun AA, Tompang MF (2007) Development of single-step bioconversion for bioethanol production by fungi and yeast using oil palm fruit bunches. Malays J Chem Eng 1:29–39Google Scholar
  25. 25.
    Zain KHM (2006) Direct production of bioethanol by liquid state bioconversion of palm oil mill effluent (POME). BSc Thesis, Faculty of Engineering, International Islamic University MalaysiaGoogle Scholar
  26. 26.
    HACH (2002) Analysis handbook, 4th edn. HACH, Loveland, CO, p 185, 355, 383, 749Google Scholar
  27. 27.
    APHA (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington DCGoogle Scholar
  28. 28.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substrates. Anal Chem 28:350–356. doi: 10.1021/ac60111a017 CrossRefGoogle Scholar
  29. 29.
    Nakamura T, Ogata Y, Hamada S, Ohta K (1996) Ethanol production from Jerusalem artichoke tubers by Aspergillus Niger and Saccharomyces cerevisiae. J Ferment Bioeng 81:564–566. doi: 10.1016/0922-338X(96)81482-6 CrossRefGoogle Scholar
  30. 30.
    Dey G, Mitra A, Banerjee R, Maiti BR (2001) Enhanced production of α-amylase by optimization of nutritional constituents using response surface methodology. Biochem Eng J 7:227–231. doi: 10.1016/S1369-703X(00)00139-X CrossRefGoogle Scholar
  31. 31.
    Stevenson DM, Weimer PJ (2002) Isolation and characterization of a Trichoderma strain capable of fermenting cellulose to ethanol. Appl Microbial Biotechnol 59:721–726CrossRefGoogle Scholar
  32. 32.
    Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628. doi: 10.1007/s00253-002-1058-9 PubMedCrossRefGoogle Scholar
  33. 33.
    Saha BC, Ueda S (1983) Alcoholic fermentation of raw sweet potato by a nonconventional method using Endomycopsis fibuligera glucoamylase preparation. Biotechnol Bioeng 25:1181–1186. doi: 10.1002/bit.260250425 PubMedCrossRefGoogle Scholar
  34. 34.
    Kosaric N (1996) Ethanol-potential source of energy and chemical products. In: Rhem HJ, Reed G (eds) Biotechnology, 2nd ed, vol 6. Wiley-VHC, New York, pp 169–172Google Scholar
  35. 35.
    Rizzi M, Klein C, Schulze C, Bui-Thanh NA, Dellweg I (1989) Xylose fermentation by yeast 5: use of ATP balances for modeling oxygen-limited growth and fermentation of yeast Pichia stipitis with xylose as carbon source. Biotechnol Bioeng 34:509–514. doi: 10.1002/bit.260340411 PubMedCrossRefGoogle Scholar
  36. 36.
    Alexander MA, Chapman TW, Jefferies TW (1988) Continuous xylose fermentation by Candida shehatae in a two-stage reactor. Appl Biochem Biotechnol 17/18:221–229. doi: 10.1007/BF02779159 CrossRefGoogle Scholar
  37. 37.
    Srinivas D, Rao KJ, Theodore K, Panda T (1995) Direct conversion of cellulosic material to ethanol by intergeneric fusant Trichoderma reesei QM 9414/ Saccharomyces cerevisiae NCIM 3288. Enzym Microb Technol 17:418–423. doi: 10.1016/0141-0229(94)00093-7 CrossRefGoogle Scholar
  38. 38.
    Lezinou V, Christakopoulos P, Li LW, Kekos D, Macris BJ (1995) Study of a single and mixed culture for the direct bioconversion of sorghum carbohydrates to ethanol. Appl Microbiol Biotechnol 43:412–415. doi: 10.1007/BF00218442 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  • Md. Zahangir Alam
    • 1
  • Nassereldeen A. Kabbashi
    • 1
  • S. Nahdatul I. S. Hussin
    • 1
  1. 1.Faculty of Engineering, Department of Biotechnology Engineering, Bioenvironmental Engineering Research Unit (BERU)International Islamic University Malaysia (IIUM)Kuala LumpurMalaysia

Personalised recommendations