Advertisement

Isolation and characterization of halophilic Archaea able to produce biosurfactants

  • S. Kebbouche-Gana
  • M. L. Gana
  • S. Khemili
  • F. Fazouane-Naimi
  • N. A. Bouanane
  • M. Penninckx
  • H. Hacene
Original Paper

Abstract

Halotolerant microorganisms able to live in saline environments offer a multitude of actual or potential applications in various fields of biotechnology. This is why some strains of Halobacteria from an Algerian culture collection were screened for biosurfactant production in a standard medium using the qualitative drop-collapse test and emulsification activity assay. Five of the Halobacteria strains reduced the growth medium surface tension below 40 mN m−1, and two of them exhibited high emulsion-stabilizing capacity. Diesel oil-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 35% sodium chloride or up to 25% ethanol in the aqueous phase. Emulsions were stable to three cycles of freezing and thawing. The components of the biosurfactant were determined; it contained sugar, protein and lipid. The two Halobacteria strains with enhanced biosurfactant producers, designated strain A21 and strain D21, were selected to identify by phenotypic, biochemical characteristics and by partial 16S rRNA gene sequencing. The strains have Mg2+, and salt growth requirements are always above 15% (w/v) salts with an optimal concentration of 15–25%. Analyses of partial 16S rRNA gene sequences of the two strains suggested that they were halophiles belonging to genera of the family Halobacteriaceae, Halovivax (strain A21) and Haloarcula (strain D21). To our knowledge, this is the first report of biosurfactant production at such a high salt concentration.

Keywords

Halobacteria Screening Biosurfactant Surface tension 

Notes

Acknowledgments

This work was supported with the assistance of the Sonatrach Center for Research and Development, a scientific cooperation agreement with the Algerian Ministry of Education. We are grateful to Pascal Groffe for technical assistance.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Abu-Ruwaida AS, Banat IM, Haditirto S, Khamis A (1991) Nutritional requirements and growth characteristics of a biosurfactant producing Rhodococcus bacterium. World J Microbiol Biotechnol 7:53–61. doi: 10.1007/BF02310920 CrossRefGoogle Scholar
  2. 2.
    Al-Batashi F, Al-Siyabi N, Al-Hajri Z, Al-Amri I, Patzelt H (2002) Cleaning up oil contaminations in production water using novel halophilic Archaea (microorganisms) from Oman. In: Yacob NC (ed) Proceedings of the fifth international conference on chemistry in industry. Aramco, Bahrain (CD edition)Google Scholar
  3. 3.
    Anton J, Meseguer I, Rodriguez-Valera F (1988) Production of an extracellular polysaccharide by Haloferax mediferranei. Appl Environ Microbiol 54:2381–2386PubMedGoogle Scholar
  4. 4.
    Anton J, Garcia-Lillo JA, Meseguer I, Rodriguez-Valera F (1989) Biopolymer production by Haloferax mediterranei. In: Rodriguez-Valera F (ed) General and applied aspects of halophilic microorganisms. Plenum Press, New York, pp 373–388Google Scholar
  5. 5.
    Austin B (1989) Novel pharmaceutical compounds from marine bacteria. J Appl Bacteriol 67:461–470PubMedGoogle Scholar
  6. 6.
    Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol 51:1–12. doi: 10.1016/0960-8524(94)00101-6 CrossRefGoogle Scholar
  7. 7.
    Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508. doi: 10.1007/s002530051648 PubMedCrossRefGoogle Scholar
  8. 8.
    Bertrand JC, Almallah M, Acquariva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archae bacterium. Lett Appl Microbiol 11:260–263. doi: 10.1111/j.1472-765X.1990.tb00176.x CrossRefGoogle Scholar
  9. 9.
    Bodour AA, Maier RM (1998) Application of a modified dropcollapse technique for surfactant quantification and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32:273–280. doi: 10.1016/S0167-7012(98)00031-1 CrossRefGoogle Scholar
  10. 10.
    Bodour AA, Drees KP, Maier RM (2003) Distribution of biosur-factant-producing microorganisms in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:3280–3287. doi: 10.1128/AEM.69.6.3280-3287.2003 PubMedCrossRefGoogle Scholar
  11. 11.
    Brown TD (1983) Halophilic prokaryotes. In: Lange OL, Nobel PS, Osmond CB, Zieglar H (eds) Encyclopedia of plant physiology, vol 126. Springer, Berlin, pp 137–162Google Scholar
  12. 12.
    Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529. doi: 10.1007/s002530051329 PubMedCrossRefGoogle Scholar
  13. 13.
    Cameron DR, Cooper DG, Neufeld RJ (1988) The manoprotein of Saccharomyces cereviciae is an effective bioemulsifier. Appl Environ Microbiol 54:1420–1425PubMedGoogle Scholar
  14. 14.
    Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266. doi: 10.1016/j.mib.2004.04.006 PubMedCrossRefGoogle Scholar
  15. 15.
    Castillo AM, Gutiérrez MC, Kamekura M, Xue Y, Ma Y, Cown DA, Jones BE, Grant W, Ventosa A (2006) Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. Int J Syst Evol Microbiol 56:765–770. doi: 10.1099/ijs.0.63954-0 PubMedCrossRefGoogle Scholar
  16. 16.
    Cooper DG, Zajic JE, Gerson DF (1979) Production of surfaceactive lipids by Corynebacterium leprus. Appl Environ Microbiol 37:4–10PubMedGoogle Scholar
  17. 17.
    Cooper DG, MacDonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412PubMedGoogle Scholar
  18. 18.
    Cooper DG, Goldenberg BG (1987) Surface Active agent from two Bacillus Species. Appl Environ Microbiol 53:224–229PubMedGoogle Scholar
  19. 19.
    Cuadros-Orellana S, Metchild Pohlschrode M, Durrant LR (2006) Isolation and characterization of halophilic Archaea able to grow in aromatic compounds. Int Biodeterior Biodegradation 57:151–154. doi: 10.1016/j.ibiod.2005.04.005 CrossRefGoogle Scholar
  20. 20.
    Cytryn E, Minz D, Oremland RS, Cohen Y (2000) Distribution and diversity of Archaea corresponding to the limnological cycle of a hypersaline stratified lake (Solar Lake, Sinai, Egypt). Appl Environ Microbiol 66:3269–3276. doi: 10.1128/AEM.66.8.3269-3276.2000 PubMedCrossRefGoogle Scholar
  21. 21.
    Das M, Das SK, Mukherjee RK (1998) Surface active properties of the culture filtrates of a Micrococcus species grown on n-alkenes and sugars. Bioresour Technol 63:231–235. doi: 10.1016/S0960-8524(97)00133-8 CrossRefGoogle Scholar
  22. 22.
    Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64PubMedGoogle Scholar
  23. 23.
    Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485PubMedGoogle Scholar
  24. 24.
    Emerson D, Chauhan S, Oriel P, Breznak JA (1994) Haloferax sp.D1227, a halophilic Archaeon capable of growth on aromatic compounds. Arch Microbiol 161:445–452. doi: 10.1007/BF00307764 CrossRefGoogle Scholar
  25. 25.
    Fairley DJ, Boyd DR, Sharma ND, Allen CCR, Morgan P, Larkin MJ (2002) Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration shift (NIH shift). Appl Environ Microbiol 68:6246–6255. doi: 10.1128/AEM.68.12.6246-6255.2002 PubMedCrossRefGoogle Scholar
  26. 26.
    Fiebig R, Schulze D, Chung JC, Lee ST (1997) Biodegradation of biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil. Biodegradation 8:67–75. doi: 10.1023/A:1008256110136 CrossRefGoogle Scholar
  27. 27.
    Galinski EA, Tindall BJ (1992) Biotechnological prospects for halophiles and halotolerant micro-organisms. In: Herbert RD, Sharp RJ (eds) Molecular biology and biotechnology of extremophiles. Blackie, London, pp 76–114Google Scholar
  28. 28.
    Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (1981) Manual of methods for general bacteriology. American Society for Microbiology, Washington, D.CGoogle Scholar
  29. 29.
    Grant WD, Larsen H (1989) Extremely halophilic archaeobacteria. Order Halobacteriales ord nov. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 2216–2233Google Scholar
  30. 30.
    Grant WD, Gemmell RT, McGenity TJ (1998) Halophiles. In: Horikoshi K, Grand WD (eds) Extremophiles: microbial life in extreme environments. Wiley-Liss, New York, pp 93–132Google Scholar
  31. 31.
    Grula MM, Russell HH, Janloo SM, Conway T (1991) Effects of sodium chloride on growth and metabolism of two strains of Clostridium. Microb Enhancement Oil Recovery Recent Adv 31:183–206CrossRefGoogle Scholar
  32. 32.
    Haddad NIA, Wang J, Mu B (2008) Isolation and characterization of a biosurfactant producing strain, Brevibacilis brevis HOB1. J Ind Microbiol Biotechnol 35:1597–1604. doi: 10.1007/s10295-008-0403-0 PubMedCrossRefGoogle Scholar
  33. 33.
    Hayashi T, Hayashi K (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a bluegreen alga Spirulina platensis. J Nat Prod 59:83–87. doi: 10.1021/np960017o PubMedCrossRefGoogle Scholar
  34. 34.
    Hodge JE, Hofreiter BT (1962) Determination of reducing sugars in carbohydrates. In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry, vol 1. Academic, New York, pp 388–390Google Scholar
  35. 35.
    Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13:271–279. doi: 10.1016/0167-7012(91)90064-W CrossRefGoogle Scholar
  36. 36.
    Javaheri M, Jenneman GE, McInerney MJ, Knapp RM (1985) Anaerobic production of a biosurfactant by Bacillus licheniformis JF-2. Appl Environ Microbiol 50:698–700PubMedGoogle Scholar
  37. 37.
    Kamekura M, Dyall-Smith ML (1995) Taxonomy of the family Halobacteriaceae and the description of two genera Halorubrobacterium and natrialba. J Gen Appl Microbiol 41:333–350. doi: 10.2323/jgam.41.333 CrossRefGoogle Scholar
  38. 38.
    Kamekura M, Dyall-Smith ML, Upsani V, Ventosa A, Kates M (1997) Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen nov, respectively, as Halorubrum vacuolatum comb nov, Natrialba magadii comb nov, and Natronomonas pharaonis comb nov, respectively. Int J Syst Bacteriol 47:853–857PubMedGoogle Scholar
  39. 39.
    Kim SH, Lim EJ, Lee SO, Lee JD, Lee TH (2000) Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol Appl Biochem 31:249–253. doi: 10.1042/BA19990111 PubMedCrossRefGoogle Scholar
  40. 40.
    Kushner DJ (1978) Life in high salt and solute concentration. Halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 317–361Google Scholar
  41. 41.
    Kuyukina MS, Ivshina IB, Philip JC, Christofi N, Dunbar SAE, Ritchkova MI (2001) Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods 46:149–156. doi: 10.1016/S0167-7012(01)00259-7 PubMedCrossRefGoogle Scholar
  42. 42.
    Lodwick D, Ross HNM, Walker JA, Almond JW, Grant WD (1991) Nucleotide sequence of the 16S ribosomal RNA gene from the haloalkaliphilic archaeon (archaebacterium) Natronobacterium magadii, and the phylogeny of halobacteria. Syst Appl Microbiol 14:352–357Google Scholar
  43. 43.
    Maier RM (2003) Biosurfactants: evolution and diversity in bacteria. Adv Appl Microbiol 52:101–121. doi: 10.1016/S0065-2164(03)01004-9 PubMedCrossRefGoogle Scholar
  44. 44.
    Margaritis A, Zajic JE, Gerson DF (1979) Production of surface-active properties of microbial surfactants. Biotechnol Bioeng 21:1151. doi: 10.1002/bit.260210706 CrossRefGoogle Scholar
  45. 45.
    Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83. doi: 10.1007/s007920100184 PubMedCrossRefGoogle Scholar
  46. 46.
    McGenity TE, Grant WD (1995) Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the Genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., and Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol 18:237–243Google Scholar
  47. 47.
    Minz D, Green SJ, Flax JL, Muyzer G, Cohen Y, Wagner M, Rittmann BE, Stahl DA (1999) Diversity in sulfate reducing bacteria in oxicand anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol 65:4666–4671PubMedGoogle Scholar
  48. 48.
    Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515PubMedCrossRefGoogle Scholar
  49. 49.
    Oren A (1994) The ecology of the extremely halophilic Archaea. FEMS Microbiol Rev 13:415–440. doi: 10.1111/j.1574-6976.1994.tb00060.x CrossRefGoogle Scholar
  50. 50.
    Oren A, Gurevich P, Gemmell RT, Teske A (1995) Halobaculum gomorrense gen nov sp nov, a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747–754PubMedCrossRefGoogle Scholar
  51. 51.
    Pallas NR, Pethica BA (1983) The surface tension of water. Colloids Surf 6:221–227. doi: 10.1016/0166-6622(83)80014-6 CrossRefGoogle Scholar
  52. 52.
    Post FJ, Collins NF (1982) A preliminary investigation of the membrane lipid of Halobacterium halobium as a food additive. J Food Biochem 6:25–38. doi: 10.1111/j.1745-4514.1982.tb00294.x CrossRefGoogle Scholar
  53. 53.
    Richard SB, Madern D, Garcin E, Zaccai G (2000) Halophilic adaptation: novel solvent-protein interactions observed in the 2.9 and 2.6 A resolution structures of a wild type and a mutant of malate desydrogenase from Haloarcula marismortui. Biochemistry 39:992. doi: 10.1021/bi991001a PubMedCrossRefGoogle Scholar
  54. 54.
    Rodriguez-Valera F (1988) Characteristics and microbial ecology of hypersaline environments. In: Rodriguez-Valera F (ed) Halophilic bacteria. CRC Press, Boca Raton, pp 3–30Google Scholar
  55. 55.
    Rodrigues LR, Teixeira JA, Van Der Mei HC, Oliveira R (2006) Isolation and partial characterisation of a biosurfactant produced by Streptococcus thermophilus A. Colloids Surf B Biointerfaces 53:105–112. doi: 10.1016/j.colsurfb.2006.08.009 PubMedCrossRefGoogle Scholar
  56. 56.
    Trebbau de Acevedo G, McInerney MJ (1996) Emulsifying activity in thermophilic and extremely thermophlic microorganisms. J Ind Microbiol 16:1–7. doi: 10.1007/BF01569914 CrossRefGoogle Scholar
  57. 57.
    Ventosa A, Neto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94CrossRefGoogle Scholar
  58. 58.
    Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:353–359PubMedGoogle Scholar
  59. 59.
    Willumsen PAE, Karlson U (1997) Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactant and bioemulsifiers. Biodegradation 7:415–423. doi: 10.1007/BF00056425 CrossRefGoogle Scholar
  60. 60.
    Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS 50. Appl Environ Microbiol 61:1706–1713PubMedGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • S. Kebbouche-Gana
    • 1
    • 2
  • M. L. Gana
    • 3
  • S. Khemili
    • 2
  • F. Fazouane-Naimi
    • 2
  • N. A. Bouanane
    • 1
  • M. Penninckx
    • 4
  • H. Hacene
    • 1
  1. 1.Faculty of Biological Sciences, Laboratory of MicrobiologyU.S.T.H.BAlgiersAlgeria
  2. 2.Department of BiologyUniversity M’Hamed Bougara of BoumerdesBoumerdesAlgeria
  3. 3.Centre of Research and Development, Laboratory of CorrosionSONATRACHBoumerdesAlgeria
  4. 4.Service of Physiology and Microbial EcologyBrusselsBelgium

Personalised recommendations