Advertisement

Polyporus tenuiculus: a new naturally occurring mushroom that can be industrially cultivated on agricultural waste

  • Alejandra Omarini
  • Bernardo E. Lechner
  • Edgardo Albertó
Original Paper

Abstract

Polyporus tenuiculus is a naturally occurring species from Central and South America that is consumed by different ethnic groups in the region. To determine the optimal conditions for fruiting body production, two strains were assayed on wheat straw and sawdust with or without supplements. Sixty days of incubation at 25°C were needed to produce a solid block. The highest yield was obtained with strain ICFC 383/00 grown on supplemented willow sawdust. In a second experiment the strain ICFC 383/00 and different supplements were used to improve the biological efficiency (BE) and to determine the quality traits and its biodegradation capacity. The highest yields were obtained on sawdust with 25% of supplements reaching 82.7% of BE. Supplements raised the number of flushes, generally from four to five, contributing to increased yields. The type of substrate had a significant effect on fruiting body diameters of P. tenuiculus, and the largest mushrooms were harvested on supplemented substrate with the highest BE coinciding with the highest dry matter loss in substrates. P. tenuiculus showed a capacity to degrade sawdust, causing a decrease of 67.2–74.5% in cellulose, 80.4–85.7% in hemicellulose, and 60.6–66.2% in lignin content at the end of the cultivation cycle. The decrease in hemicellulose was relatively greater than that of cellulose and lignin on supplemented substrates. This is the first report of the cultivation of P. tenuiculus on lignocellulosic waste, and it is a promising species both for commercial production and for its potential use in the degradation of other biowastes.

Keywords

Polyporus tenuiculus Cultivation Lignocellulosic wastes Substrate biodegradation Naturally occurring strains 

Notes

Acknowledgments

This work was supported by the research project PIP 5516 from National Research Council (CONICET, Argentina). E Albertó & BE Lechner are staff members, and A. Omarini is a fellow from CONICET. We thank RM Borgues Da Silveira for providing strains and M. Sierra Marina (UNSAM) for technical assistance.

References

  1. 1.
    Blanchette RA (1991) Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381–398. doi: 10.1146/annurev.py.29.090191.002121 CrossRefGoogle Scholar
  2. 2.
    Borges Da Silveira RM, Wright JE (2002) Polyporus s. str. in southern South America: mating test. Mycol Res 106:1323–1330. doi: 10.1017/S0953756202006688 CrossRefGoogle Scholar
  3. 3.
    Gaitán-Hernández R, Esqueda M, Gutiérrez A, Sánchez A, Beltrán-García M, Mata G (2006) Bioconversion of agrowastes by Lentinula edodes: the high potential of viticulture residues. Appl Microbiol Biotechnol 71:432–439. doi: 10.1007/s00253-005-0241-1 PubMedCrossRefGoogle Scholar
  4. 4.
    Goering HK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagents, procedures and some applications). Agric. Handbook No 379. ARS-USDA, Washington DC, USAGoogle Scholar
  5. 5.
    Ishida H, Inaoka Y, Shibatani J, Fukushima M, Tsuji K (1999) Studies of the active substances in herbs used for hair treatment. II. Isolation of hair regrowth substances, acetosyringone and polyporusterone A and B, from Polyporus umbellatus Fries. Biol Pharm Bull 22:1189–1192PubMedGoogle Scholar
  6. 6.
    Kerem Z, Freisen D, Hadar Y (1992) Lignocellulose degradation during solid waste substrate fermentation: Pleurotus ostreatus vs Phanerocheate chrysosporium. Appl Environ Microbiol 58:1121–1127PubMedGoogle Scholar
  7. 7.
    Kirk TK, Connors WJ, Zeikus JG (1976) Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Appl Environ Microbiol 32:192–194PubMedGoogle Scholar
  8. 8.
    Kirk PM, Cannon P, David JC, Stalpers JA (2001) Ainsworth and Bisby’s dictionary of the fungi, 9th edn. CAB INTERNATIONAL, Wallingford, UKGoogle Scholar
  9. 9.
    Kues U, Liu Y (2000) Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 54:141–152. doi: 10.1007/s002530000396 PubMedCrossRefGoogle Scholar
  10. 10.
    Lechner BE, Albertó E (2007) Optimal conditions for the fruit body production of natural occurring strains of Lentinus tigrinus. Bioresour Technol 98:1866–1869. doi: 10.1016/j.biortech.2005.07.036 PubMedCrossRefGoogle Scholar
  11. 11.
    Lechner BE, Papinutti VL (2006) Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw. Process Biochem 41:594–598. doi: 10.1016/j.procbio.2005.08.004 CrossRefGoogle Scholar
  12. 12.
    Manzi P, Aguzzi A, Pizzoferrato L (2001) Nutritional value of mushrooms widely consumed in Italy. Food Chem 73:321–325. doi: 10.1016/S0308-8146(00)00304-6 CrossRefGoogle Scholar
  13. 13.
    Mukherjee R, Nandi B (2004) Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species. Int Biodeter Biodegr 53:7–12. doi: 10.1016/S0964-8305(03)00112-4 CrossRefGoogle Scholar
  14. 14.
    Myoson E, Verachtert H (1991) Growth of high fungi on wheat straw and their impact on the digestibility of the substrate. Appl Microbiol Biotechnol 36:421–424Google Scholar
  15. 15.
    Nazareth SW, Sampy JD (2003) Production and characterisation of lignocellulases of Panus tigrinus and their application. Int Biodeter Biodegr 52:207–214. doi: 10.1016/S0964-8305(03)00051-9 CrossRefGoogle Scholar
  16. 16.
    Philippoussis A, Zervakis G, Diamantopoulou P (2001) Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World J Microbiol Biotechnol 17:191–200. doi: 10.1023/A:1016685530312 CrossRefGoogle Scholar
  17. 17.
    Philippoussis A, Diamantopoulou PA, Zervakis GI (2003) Correlation of the properties of several lignocellulosic substrates to the crop performance of the shiitake mushroom Lentinula edodes. World J Microbiol Biotechnol 19:551–557. doi: 10.1023/A:1025100731410 CrossRefGoogle Scholar
  18. 18.
    Philippoussis A, Diamantopoulou P, Israilides C (2007) Productivity of agricultural residues used for the cultivation of the medicinal fungus Lentinula edodes. Int Biodeter Biodegr 59:216–219. doi: 10.1016/j.ibiod.2006.10.007 CrossRefGoogle Scholar
  19. 19.
    Przybylowicz P, Donoghue J (1988) Shiitake Growers handbook. The art and science of mushroom cultivation. Kendall/Hunt Publishing Company, Dubuque, Iowa, USAGoogle Scholar
  20. 20.
    Royse DJ, Sanchez JE (2007) Ground wheat straw as a substitute for portions of oak wood chips used in shiitake (Lentinula edodes) substrate formulae. Bioresour Technol 98:2137–2141. doi: 10.1016/j.biortech.2006.08.023 PubMedCrossRefGoogle Scholar
  21. 21.
    Royse DJ, Sanchez-Vasquez JE (2003) Influence of precipitated calcium carbonate (CaCO3) on shiitake (Lentunula edodes) yield and mushroom size. Bioresour Technol 90:225–228. doi: 10.1016/S0960-8524(03)00119-6 PubMedCrossRefGoogle Scholar
  22. 22.
    Royse DJ, Rhodes TW, Ohga S, Sanchez JE (2004) Yield, mushroom size and time to production of Pleurotus cornucopiae (oyster mushroom) grown on switch grass substrate spawned and supplemented at various rates. Bioresour Technol 91:85–91. doi: 10.1016/S0960-8524(03)00151-2 PubMedCrossRefGoogle Scholar
  23. 23.
    Ruán-Soto F, Garibay-Orijel R, Cifuentes J (2004) Conocimiento micológico tradicional en la Planicie del Golfo de México. Rev Mex Micol 19:59–70Google Scholar
  24. 24.
    Ruán-Soto F, Garibay-Orijel R, Cifuentes J (2006) Process and dynamics of traditional selling wild edible mushrooms in tropical México. J Ethnobiol Ethnomed 2:1746–4269. doi: 10.1186/1746-4269-2-3 CrossRefGoogle Scholar
  25. 25.
    Salmones D, Mata G, Waliszewski KN (2005) Comparative culturing of Pleurotus spp on coffee pulp and wheat straw: biomass production and substrate biodegradation. Bioresour Technol 96:537–544. doi: 10.1016/j.biortech.2004.06.019 PubMedCrossRefGoogle Scholar
  26. 26.
    Sekiya N, Hikiami H, Nakai Y, Sakakibara I, Nozaki K, Kouta K, Shimada Y, Terasawa K (2005) Inhibitory effects of triterpenes isolated from Chuling (Polyporus umbellatus Fries) on free radical-induced lysis of red blood cells. Biol Pharm Bull 28:817–821. doi: 10.1248/bpb.28.817 PubMedCrossRefGoogle Scholar
  27. 27.
    Shashirekta MN, Rajarathnam S (2007) Bioconversion and biotransformation of coir pith for economic production of Pleurotus florida: chemical and biochemical changes in coir pith during the mushroom growth and fructification. World J Microbiol Biotechnol 23:1107–1114. doi: 10.1007/s11274-006-9340-0 CrossRefGoogle Scholar
  28. 28.
    Shen Q, Royse DJ (2001) Effects of nutrient supplements on biological efficiency, quality and crop cycle time of maitake (Grifola frondosa). Appl Microbiol Biotechnol 57:74–78. doi: 10.1007/s002530100748 PubMedCrossRefGoogle Scholar
  29. 29.
    Stamets PS (1993) Growing gourmet and medicinal mushrooms. Ten Speed Press, Berkeley, USA, pp 554Google Scholar
  30. 30.
    Uhart M, Piscera JM, Albertó E (2007) Utilization of new naturally occurring strains and supplementation to improve the biological efficiency of the edible mushroom Agrocybe cylindracea. J Ind Microbiol Biotechnol. doi: 10.1007/s10295-008-0321-1
  31. 31.
    Valmaseda M, Martinez MJ, Martinez AT (1991) Kinetics of wheat straw solid state fermentation with Trametes versicolor and Pleurotus ostreatus lignin and polysaccharide alteration and production of related enzymatic activities. Appl Microbiol Biotechnol 35:817–823. doi: 10.1007/BF00169902 CrossRefGoogle Scholar
  32. 32.
    Wainright M (1992) Novel industrial uses for fungi. In: Wainright M (ed) An introduction to fungal biotechnology. Wiley Interscience, Chichester, UK, p 67Google Scholar
  33. 33.
    Yildiz S, Yildiz UC, Gezer ED, Temiz A (2002) Some lignocellulosic wastes used as raw material in cultivation of the Pleurotus ostreatus culture mushroom. Process Biochem 38:301–306. doi: 10.1016/S0032-9592(02)00040-7 CrossRefGoogle Scholar
  34. 34.
    Zervakis G, Yiatras P, Balis C (1996) Edible mushrooms from olive oil mill waste. Int Biodeter Biodegr 38:237–243. doi: 10.1016/S0964-8305(96)00056-X CrossRefGoogle Scholar
  35. 35.
    Zhang R, Li X, Fadel JG (2002) Oyster mushroom cultivation with rice and wheat straw. Bioresour Technol 82:277–284. doi: 10.1016/S0960-8524(01)00188-2 PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  • Alejandra Omarini
    • 1
  • Bernardo E. Lechner
    • 1
  • Edgardo Albertó
    • 1
  1. 1.Laboratory of Mycology and Mushroom CultivationIIB-INTECH (UNSAM-CONICET)ChascomúsArgentina

Personalised recommendations