Advertisement

Investigations into the uptake of copper, iron and selenium by a highly sulphated bacterial exopolysaccharide isolated from microbial mats

  • Xavier MoppertEmail author
  • Tinaïg Le Costaouec
  • Gérard Raguenes
  • Anthony Courtois
  • Christelle Simon-Colin
  • Philippe Crassous
  • Bernard Costa
  • Jean Guezennec
Original Paper

Abstract

A bacterium isolated from microbial mats located on a polynesian atoll produced a high molecular weight (3,000 kDa) and highly sulphated exopolysaccharide. Previous studies showed that the chemical structure of this EPS consisted of neutral sugars, uronic acids, and high proportions of acetate and sulphate groups. The copper- and iron-binding ability of the purified pre-treated native EPS was investigated. Results showed that this EPS had a very high affinity for both copper (9.84 mmol g−1 EPS) and ferrous iron (6.9 mmol g−1 EPS). Amazingly, this EPS did not show any affinity for either ferric ions or selenium salts. This finding is one of the first steps in assessing the biotechnological potential of this polysaccharide.

Keywords

Binding capacity Copper Iron Microbial mats Sulphated exopolysaccharide 

Notes

Acknowledgments

This study was financially supported by the CAIRAP SA (Arue, Tahiti). The authors would like to thank the Research Ministry of the government of French Polynesian and specially Mrs. Tea Frogier for her help in the organization of this research program.

References

  1. 1.
    Angyal SJ (1989) In: Tipson RS, Horton D (Eds.) Advances in carbohydrate chemistry and biochemistry, vol. 47, Academic Press, Washington, DC, pp 1–43Google Scholar
  2. 2.
    Bar-Or Y, Shilo M (1987) Characterization of macromolecular flocculents produced by Phormidium sp. strain J1 and by Anabaenopsis circularis PCC 6720. Appl Environ Microbiol 53:2226–2230PubMedGoogle Scholar
  3. 3.
    Benedetti LM, Topp E, Stella VJ (1989) A novel drug delivery system: microspheres of hyaluronic acid derivatives. In: Crescenzi V, Dea ICM, Paoletti S, Stivala S, Sutherland IW (eds) Biomedical and biotechnological advances in industrial polysaccharides. Gordon and Breach, New York, pp 27–33Google Scholar
  4. 4.
    Brierley CL, Brierley JA (1993) Immobilization of biomass for industrial application of biosorption. In Torma AE, Apel ML, Brierley CL (eds), vol 2 Biohydrometallurgical Technologies Metal and Materials Society, Warrendale, pp 35–44Google Scholar
  5. 5.
    Colliec-Jouault S, Chevolot L, Helley D, Ratiskol J, Bros A, Sinquin C, Roger O, Fisher AM (2001) Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus. Biochim Biophys Acta 1528:141–151PubMedGoogle Scholar
  6. 6.
    Defarge C, Trichet J, Coute A (1994) On the appearance of cyanobacterial calcification in modern stromatolites. Sediment Geol 94:1–19. doi: 10.1016/0037-0738(94)90144-9 CrossRefGoogle Scholar
  7. 7.
    Defarge C, Trichet J, Maurin A, Hucher M (1994) Kopara in Polynesian atolls: early stages of formation of calcareous stromatolites. Sediment Geol 89:9–23. doi: 10.1016/0037-0738(94)90080-9 CrossRefGoogle Scholar
  8. 8.
    Ferri T, Sangiorgio P (1999) Voltammetric study of the interaction between Se(IV) and dissolved organic matter in environmental aqueous matrices. Anal Chim Acta 385:337–343. doi: 10.1016/S0003-2670(98)00693-X CrossRefGoogle Scholar
  9. 9.
    Ferri T, Sangiorgio P (2001) Selenium speciation in waters: role of dissolved polysaccharides on the mobilization process. Ann Chim 91:229–238PubMedGoogle Scholar
  10. 10.
    Figuera MM, Volesky B, Mathieu HJ (1999) Instrumental analysis of iron species biosorption by Sargassum biomass. Environ Sci Technol 33:1840–1846. doi: 10.1021/es981111p CrossRefGoogle Scholar
  11. 11.
    Guezennec J (2002) Deep-sea hydrothermal vents: a new source of innovative bacterial exopolysaccharides of biotechnological interest? J Ind Microbiol Biotechnol 29:204–208. doi: 10.1038/sj.jim.7000298 PubMedCrossRefGoogle Scholar
  12. 12.
    Gutnick D (1997) Engineering polysaccharides for biosorption of heavy at oil/water interfaces. Res Microbiol 148:519–521. doi: 10.1016/S0923-2508(97)88353-2 PubMedCrossRefGoogle Scholar
  13. 13.
    Loaec M, Olier R, Guezennec J (1997) Uptake of lead, cadmiun and zinc by a novel bacterial exopolysaccharide. Water Res 31:1171–1179. doi: 10.1016/S0043-1354(96)00375-2 CrossRefGoogle Scholar
  14. 14.
    Loaec M, Olier R, Guezennec J (1998) Chelating properties of bacterial exopolysaccharides from deep-sea hydrothermal vents. Carbohydr Polym 35:65–70. doi: 10.1016/S0144-8617(97)00109-4 CrossRefGoogle Scholar
  15. 15.
    Mancuso Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271. doi: 10.1007/s10126-004-5118-2 CrossRefGoogle Scholar
  16. 16.
    Mao Che L, Andrefouet S, Bothorel V, Guezennec M, Rougeaux H, Guezennec J, Deslandes E, Trichet J, Matheron R, Le Campion T, Payri C, Caumette P (2001) Physical, chemical, and microbiological characteristics of microbial mats (kopara) in the South Pacific atolls of French Polynesia. Can J Microbiol 47:994–1012. doi: 10.1139/cjm-47-11-994 CrossRefGoogle Scholar
  17. 17.
    Nishino T, Nagumo T (1992) Anticoagulant and antithrombin activities of oversulfated fucans. Carbohydr Res 229:355–362. doi: 10.1016/S0008-6215(00)90581-0 PubMedCrossRefGoogle Scholar
  18. 18.
    Norberg AB, Person H (1984) Accumulation of heavy-metal ions by Zoogloea ramigera. Biotechnol Bioeng 26:239–246. doi: 10.1002/bit.260260307 PubMedCrossRefGoogle Scholar
  19. 19.
    Raguenes G, Moppert X, Richert L, Ratiskol J, Payri C, Costa B, Guezennec J (2004) A novel exopolymer-producing bacterium, Paracoccus zeaxanthinifaciens subsp. payriae, isolated from a “kopara” mat located in Rangiroa, an atoll of French Polynesia. Curr Microbiol 49:145–151. doi: 10.1007/s00284-004-4303-x PubMedCrossRefGoogle Scholar
  20. 20.
    Richert L, Golubic S, Guedes R, Ratiskol J, Payri C, Guezennec J (2005) Characterization of exopolysaccharides produced by cyanobacteria isolated from polynesian microbial mats. Curr Microbiol 51:379–384. doi: 10.1007/s00284-005-0069-z PubMedCrossRefGoogle Scholar
  21. 21.
    Rougeaux H, Guezennec M, Mao Che L, Payri C, Deslandes E, Guezennec J (2001) Microbial communities and exopolysaccharides from polynesian mats. Mar Biotechnol 3:181–187. doi: 10.1007/s101260000063 PubMedCrossRefGoogle Scholar
  22. 22.
    Sandford PA, Baird J (1983) Industrial utilization of polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic Press, London, pp 411–490Google Scholar
  23. 23.
    Shilo M (1989) The unique characteristics of benthic cyanobacteria. Microbial mats. In Cohen, Y., Rosenberg, E. (eds) American Society for Microbiology, Washington, pp 207–13Google Scholar
  24. 24.
    Sutherland IW (1989) Bacterial exopolysaccharides: their nature and production. Antibiot Chemother 42:50–55PubMedGoogle Scholar
  25. 25.
    Sutherland IW (1994) Structure-function relationships in microbial exopolysaccharides. Biotechnol Adv 12:393–448. doi: 10.1016/0734-9750(94)90018-3 PubMedCrossRefGoogle Scholar
  26. 26.
    Volesky B (1990) Removal and recovery of heavy metals by biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 7–44Google Scholar
  27. 27.
    Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250. doi: 10.1021/bp00033a001 PubMedCrossRefGoogle Scholar
  28. 28.
    Volpi N, Sandri I, Venturelli T (1995) Activity of chrondroitin ABC lyase and hyaluronidase on free-radical degraded chondroitin sulfate. Carbohydr Res 279:193–200. doi: 10.1016/0008-6215(95)00246-4 PubMedCrossRefGoogle Scholar
  29. 29.
    Wan Ngah WS, Kamari A, Koay YJ (2004) Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. Int J Biol Macromol 34:155–161. doi: 10.1016/j.ijbiomac.2004.03.001 PubMedCrossRefGoogle Scholar
  30. 30.
    Weiner R, Langille S, Quintero E (1995) Structure, function and immunochemistry of bacterial exopolysaccharides. J Ind Microbiol 15:339–346. doi: 10.1007/BF01569989 PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  • Xavier Moppert
    • 1
    Email author
  • Tinaïg Le Costaouec
    • 2
  • Gérard Raguenes
    • 2
  • Anthony Courtois
    • 2
  • Christelle Simon-Colin
    • 2
  • Philippe Crassous
    • 3
  • Bernard Costa
    • 1
  • Jean Guezennec
    • 2
  1. 1.CAIRAP Sarl, Centre d’Analyses Industrielles et de Recherche Appliquée pour le PacifiquePapeete, TahitiFrench Polynesia
  2. 2.Institut Français de Recherche pour l’Exploitation de la MerBIOMAR/BMM, Centre de BrestPlouzanéFrance
  3. 3.Institut Français de Recherche pour l’Exploitation de la MerEEP/LEP, Centre de BrestPlouzanéFrance

Personalised recommendations