DNA plasmid production in different host strains of Escherichia coli

Original Paper

Abstract

We compared plasmid DNA production in 13 strains of Escherichia coli in shake flasks using media containing glucose or glycerol. DNA yield from either carbon source showed small correlation with maximum growth rate. Three strains, SCS1-L, BL21 and MC4100, were selected for a controlled exponential fed-batch process at a growth rate of 0.14 h−1 to an optical density of about 70, followed by a four-hour heat treatment. Prior to heat treatment, SCS1-L generated 15.4 mg DNA/g, BL21 generated 11.0 mg DNA/g and MC4100 generated 7.9 mg DNA/g, while after heat treatment the strains attained DNA yields, respectively, of 18.0, 15.0 and 6.8 mg/g. The strains also varied in their percentage of supercoiled DNA after heat treatment, with SCS1-L averaging 66% supercoiled, BL21 17% and MC4100 40%. We further investigated the two strains that yielded the highest percentage of supercoiled DNA (SCS1-L and MC4100) at a higher growth rate of 0.28 h−1. At this condition, a slightly lower DNA yield was generated faster, and the percentage of supercoiled DNA increased. Heat treatment improved DNA yield, and surprisingly did so to a greater extent at the higher growth rate. As a consequence of these factors, higher growth rates might be advantageous for DNA production.

Keywords

Fed-batch process Supercoiled DNA DNA yield Heat treatment 

Notes

Acknowledgments

The authors acknowledge S. E. Kushner at the University of Georgia for helpful advice, and Amanda Randall at Merial for help with the supercoiling analyses.

References

  1. 1.
    Arnold CN, McElhanon J, Lee A, Leonhart R, Siegele DA (2001) Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J Bacteriol 183(7):2178–2186. doi: 10.1128/JB.183.7.2178-2186.2001 PubMedCrossRefGoogle Scholar
  2. 2.
    Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS (1990) Plasmid-encoded protein: the principal factor in the metabolic burden associated with recombinant bacteria. Biotechnol Bioeng 35:668–681. doi: 10.1002/bit.260350704 PubMedCrossRefGoogle Scholar
  3. 3.
    Berzofsky JA, Masaki T, SangKon O, Belyakov IM, Ahlers JD, Janik JE, Morris JC (2004) Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest 113:1515–1525PubMedGoogle Scholar
  4. 4.
    Carnes AE (2005) Fermentation design for the manufacture of therapeutic plasmid DNA. BioProcess Intl 3:36–44Google Scholar
  5. 5.
    Carnes AE, Hodgson CP, Williams JA (2006) Inducible Escherichia coli fermentation for increased plasmid DNA production. Biotechnol Appl Biochem 45:155–166. doi: 10.1042/BA20050223 PubMedCrossRefGoogle Scholar
  6. 6.
    Catanzaro AT, Roederer M, Koup RA, Bailer RT, Enama ME, Nason MC, Martin JE, Rucker S, Andrews CA, Gomez PL, Mascola JR, Nabel GJ, Graham BS (2007) Phase I clinical evaluation of a six-plasmid multiclade HIV-1 DNA candidate vaccine. Vaccine 25:4085–4092. doi: 10.1016/j.vaccine.2007.02.050 PubMedCrossRefGoogle Scholar
  7. 7.
    Chen W, Graham C, Ciccarelli RB (1997) Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines. J Ind Microbiol Biotechnol 18:43–48. doi: 10.1038/sj.jim.2900355 PubMedCrossRefGoogle Scholar
  8. 8.
    Donnelly J, Berry K, Ulmer J (2003) Technical and regulatory hurdles for DNA vaccines. Int J Parasitol 33:457–467. doi: 10.1016/S0020-7519(03)00056-0 PubMedCrossRefGoogle Scholar
  9. 9.
    Durland RH, Eastman EM (1998) Manufacturing and quality control of plasmid-based gene expression systems. Adv Drug Deliv Rev 30:33–48. doi: 10.1016/S0169-409X(97)00105-1 PubMedCrossRefGoogle Scholar
  10. 10.
    Eiteman MA, Chastain MJ (1997) Optimization of the ion-exchange analysis of organic acids from fermentation. Anal Chim Acta 338:69–75. doi: 10.1016/S0003-2670(96)00426-6 CrossRefGoogle Scholar
  11. 11.
    Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24:530–536. doi: 10.1016/j.tibtech.2006.09.001 PubMedCrossRefGoogle Scholar
  12. 12.
    Engberg B, Nordström K (1975) Replication of R-factor R1 in Escherichia coli K-12 at different growth rates. J Bacteriol 123(1):179–186PubMedGoogle Scholar
  13. 13.
    Fitzwater T, Zhang X, Elblel R, Polisky B (1988) Conditional high copy number ColE 1 mutants: resistance to RNA1 inhibition in vivo and in vitro. EMBO J 7:3289–3297PubMedGoogle Scholar
  14. 14.
    Gilbert SC, Moorthy VS, Andrews L, Pathan AA, McConkey SJ, Vuola JM, Keating SM, Berthoud T, Webster D, McShane H, Hill AV (2006) Synergistic DNA-MVA prime-boost vaccination regimes for malaria and tuberculosis. Vaccine 24:4554–4561. doi: 10.1016/j.vaccine.2005.08.048 PubMedCrossRefGoogle Scholar
  15. 15.
    Glaser V (1997) Promise of gene therapy for treating disease remains on trial in the clinic. Genet Eng News 14:33–34Google Scholar
  16. 16.
    Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13:247–261. doi: 10.1016/0734-9750(95)00004-A PubMedCrossRefGoogle Scholar
  17. 17.
    Hartikka J, Sawdey M, Cornefert-Jensen F, Margalith M, Barnhart K, Nolasco M, Vahlsing HL, Meek J, Marquet M, Hobart P, Norman J, Manthorpe M (1996) An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum Gene Ther 7:1205–1217. doi: 10.1089/hum.1996.7.10-1205 PubMedCrossRefGoogle Scholar
  18. 18.
    Hecker M, Schroeter A, Mach F (1985) Escherichia coli relA strains as hosts for amplification of pBR322 plasmid DNA. FEMS Microbiol Lett 29:331–334. doi: 10.1111/j.1574-6968.1985.tb00885.x CrossRefGoogle Scholar
  19. 19.
    Herrmann JE (2006) DNA vaccines against enteric infections. Vaccine 24:3705–3708. doi: 10.1016/j.vaccine.2005.07.012 PubMedCrossRefGoogle Scholar
  20. 20.
    Jones RC, Anthony RM (1977) The relationship between nutrient feed rate and specific growth rate in fed batch cultures. Appl Microbiol Biotechnol 4:87–92Google Scholar
  21. 21.
    Jones-Prather K, Edmonds MC, Herod JW (2006) Identification and characterization of IS1 transposition in plasmid amplification mutants of E. coli clones producing DNA vaccines. Appl Microbiol Biotechnol 73:815–826. doi: 10.1007/s00253-006-0532-1 CrossRefGoogle Scholar
  22. 22.
    Jones-Prather K, Sager KS, Murphy J, Chartrain M (2003) Industrial scale production of plasmid DNA for vaccine and gene therapy: plasmid design, production, and purification. Enzyme Microb Technol 33:865–883. doi: 10.1016/S0141-0229(03)00205-9 CrossRefGoogle Scholar
  23. 23.
    Laddy DJ, Yan J, Corbitt N, Kobasa D, Kobinger GP, Weiner DB (2007) Immunogenicity of novel consensus-based DNA vaccines against avian influenza. Vaccine 25:2984–2989. doi: 10.1016/j.vaccine.2007.01.063 PubMedCrossRefGoogle Scholar
  24. 24.
    Lahijani R, Hulley G, Soriano G, Horn NA, Marquet M (1996) High-yield production of pBR322-derived plasmids intended for human gene therapy by employing a temperature-controllable point mutation. Hum Gene Ther 7:1971–1980. doi: 10.1089/hum.1996.7.16-1971 PubMedCrossRefGoogle Scholar
  25. 25.
    Lin-Chao S, Bremer H (1986) Effect of the bacterial growth rate on replication control of plasmid pBR322 in Escherichia coli. Mol Gen Genet 203:143–149. doi: 10.1007/BF00330395 PubMedCrossRefGoogle Scholar
  26. 26.
    Listner K, Bentley L, Okonkowski J, Kistler C, Wnek R, Caparoni A, Junker B, Robinson D, Salmon P, Chartrain M (2006) Development of a highly productive and scalable plasmid DNA production platform. Biotechnol Prog 22:1335–1345. doi: 10.1021/bp060046h PubMedCrossRefGoogle Scholar
  27. 27.
    Lowe DB, Shearer MH, Jumper CA, Kennedy RC (2007) Towards progress on DNA vaccines for cancer. Cell Mol Life Sci 64:2391–2403. doi: 10.1007/s00018-007-7165-0 PubMedCrossRefGoogle Scholar
  28. 28.
    Miki T, Yasukochi T, Nagatani H, Furuno M, Orita T, Yamada H, Imoto T, Horiuchi T (1987) Construction of a plasmid vector for the regulatable high level expression of eukaryotic genes in Escherichia coli: an application to overproduction of chicken lysozyme. Protein Eng 1:327–332. doi: 10.1093/protein/1.4.327 PubMedCrossRefGoogle Scholar
  29. 29.
    Nichols WW, Ledwith BJ, Manam SV, Troilo PJ (1995) Potential DNA vaccine integration into host cell genome. Ann N Y Acad Sci 27:30–39. doi: 10.1111/j.1749-6632.1995.tb44729.x CrossRefGoogle Scholar
  30. 30.
    Okonkowski J, Kizer-Bentley L, Listner K, Robinson D, Chartrain M (2005) Development of a robust, versatile, and scalable inoculum train for the production of a DNA vaccine. Biotechnol Prog 21:1038–1047. doi: 10.1021/bp040041p PubMedCrossRefGoogle Scholar
  31. 31.
    O’Kennedy RD, Baldwin C, Keshavarz-Moore E (2000) Effects of growth medium selection on plasmid DNA production and initial processing steps. J Biotechnol 76:175–183. doi: 10.1016/S0168-1656(99)00187-X PubMedCrossRefGoogle Scholar
  32. 32.
    O’Kennedy RD, Ward JM, Keshavarz-Moore E (2003) Effects of fermentation strategy on the characteristics of plasmid DNA production. Biotechnol Appl Biochem 37:83–90. doi: 10.1042/BA20020099 PubMedCrossRefGoogle Scholar
  33. 33.
    Prazeres DMF, Ferreira GNM, Monteiro GA, Cooney CL, Cabral JMS (1999) Large-scale production of pharmaceutical-grade plasmid DNA for gene therapy: problems and bottlenecks. Trends Biotechnol 17:169–174. doi: 10.1016/S0167-7799(98)01291-8 PubMedCrossRefGoogle Scholar
  34. 34.
    Reinikainen P, Korpela K, Nissinen V, Olkku J, Soderlund H, Markkanen P (1989) Escherichia coli plasmid production in a fermenter. Biotechnol Bioeng 33:386–393. doi: 10.1002/bit.260330403 PubMedCrossRefGoogle Scholar
  35. 35.
    Reinikainen P, Virkajärvi I (1989) Escherichia coli growth and plasmid copy numbers in continuous cultivations. Biotechnol Lett 11(4):225–230. doi: 10.1007/BF01031568 CrossRefGoogle Scholar
  36. 36.
    Rozkov A, Avignone-Rossa CA, Ertl PF, Jones P, O’Kennedy RD, Smith JJ, Dale JW, Bushell ME (2006) Fed batch culture with declining specific growth rate for high-yielding production of a plasmid containing a gene therapy sequence in Escherichia coli DH1. Enzyme Microb Technol 39:47–50. doi: 10.1016/j.enzmictec.2005.09.005 CrossRefGoogle Scholar
  37. 37.
    Schmidt T, Friehs K, Flaschel E, Schleef M (2003) Method for the isolation of plasmid DNA. US Patent 6,664,078Google Scholar
  38. 38.
    Seo J, Bailey JE (1985) Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli. Biotechnol Bioeng 27:1668–1674. doi: 10.1002/bit.260271207 PubMedCrossRefGoogle Scholar
  39. 39.
    Seo J, Bailey JE (1986) Continuous cultivation of recombinant Escherichia coli: existence of an optimum dilution rate for maximum plasmid and gene product concentration. Biotechnol Bioeng 28:1590–1594. doi: 10.1002/bit.260281018 PubMedCrossRefGoogle Scholar
  40. 40.
    Shamlou PA (2003) Scaleable processes for the manufacture of therapeutic quantities of plasmid DNA. Biotechnol Appl Biochem 37:207–218. doi: 10.1042/BA20030011 PubMedCrossRefGoogle Scholar
  41. 41.
    Sheets RL, Stein J, Manetz S, Duffy D, Nason M (2006) Biodistribution of DNA plasmid vaccines against HIV-1, ebola severe acute respiratory syndrome, or west Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts. Toxicol Sci 91:610–619. doi: 10.1093/toxsci/kfj169 PubMedCrossRefGoogle Scholar
  42. 42.
    Shiloach J, Fass R (2005) Growing E. coli to high cell density: a historical perspective on method development. Biotechnol Adv 23:345–357. doi: 10.1016/j.biotechadv.2005.04.004 PubMedCrossRefGoogle Scholar
  43. 43.
    Siegel R, Ryu DD (1985) Kinetic study of instability of recombinant plasmid pPLc23trpAI in E. coli using two-stage continuous culture system. Biotechnol Bioeng 27(1):28–33. doi: 10.1002/bit.260270105 PubMedCrossRefGoogle Scholar
  44. 44.
    Spira B, Hu X, Ferenci T (2008) Strain variation in ppGpp concentration and RpoS levels in laboratory strains of Escherichia coli K-12. Microbiology 154:2887–2895. doi: 10.1099/mic.0.2008/018457-0 PubMedCrossRefGoogle Scholar
  45. 45.
    Tamm T, Polisky B (1985) Characterization of the ColE1 primer-RNA1 complex: analysis of a domain of ColE1 RNA1 necessary for its interaction with primer RNA. Proc Natl Acad Sci USA 82:2257–2261. doi: 10.1073/pnas.82.8.2257 PubMedCrossRefGoogle Scholar
  46. 46.
    Tuteja R (2002) DNA vaccine against malaria: a long way to go. Crit Rev Biochem Mol Biol 37:29–54. doi: 10.1080/10409230290771447 PubMedCrossRefGoogle Scholar
  47. 47.
    US Dept of Health and Human Services, Food and Drug Administration (2007) Guidance for industry: considerations for plasmid DNA vaccines for infectious disease indications, November 2007Google Scholar
  48. 48.
    Wang Z, Yuan Z, Henggeb UR (2004) Processing of plasmid DNA with ColE1-like replication origin. Plasmid 51:149–161. doi: 10.1016/j.plasmid.2003.12.002 PubMedCrossRefGoogle Scholar
  49. 49.
    Weintraub H, Cheng PF, Conrad K (1986) Expression of transfected DNA depends on DNA topology. Cell 46:115–122. doi: 10.1016/0092-8674(86)90865-2 PubMedCrossRefGoogle Scholar
  50. 50.
    Wong EM, Muesing MA, Polisky B (1982) Temperature-sensitive copy number mutants of ColE1 are located in an untranslated region of the plasmid genome. Proc Natl Acad Sci USA 79:3570–3574. doi: 10.1073/pnas.79.11.3570 PubMedCrossRefGoogle Scholar
  51. 51.
    Xu Z, Shen W, Chen H, Cen P (2005) Effects of medium composition on the production of plasmid DNA vector potentially for human gene therapy. J Zhejiang Univ Sci 6B:396–400. doi: 10.1631/jzus.2005.B0396 CrossRefGoogle Scholar
  52. 52.
    Yau SY, Keshavarz-Moore E, Ward J (2008) Host strain influences on supercoiled plasmid DNA production in Escherichia coli: implications for efficient design of large-scale processes. Biotechnol Bioeng 101:529–544. doi: 10.1002/bit.21915 PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  1. 1.Merial LtdAthensUSA
  2. 2.Center for Molecular BioEngineering, Driftmier EngineeringUniversity of GeorgiaAthensUSA

Personalised recommendations