Influence of metal addition on ethanol production with Pichia stipitis ATCC 58784

  • Yuan Li
  • Zhenya Zhang
  • Zhongfang Lei
  • Yingnan Yang
  • Motoo Utsumi
  • Norio Sugiura
Original Paper


Trace metals always act as cofactors or coenzymes in many cellular processes. Deficiency or excess of some metals will affect the fermentation of lignocellulosic hydrolysate. In order to make sure the deficient or excessive states of metals in culture medium, metal contents analysis was conducted in Pichia stipitis ATCC 58784 cells, synthetic medium, and diluted acid hydrolysate of rice straw. The results showed that Cu, Ni, and Co were deficient, and Al was a little excessive. So the influences of Cu2+, Al3+, Ni2+, and Co2+ additions on the growth and ethanol production of ATCC 58784 were further researched. Low concentration additions of Cu2+ and Al3+ (<0.24 mM and <0.23 mM, respectively) improved biomass growth of ATCC 58784 by 34 and 13%, respectively; however, higher concentrations decreased biomass growth. On the other hand, addition of Cu2+ (0.39 mM) did not affect volumetric ethanol production significantly (P = 0.05) and addition of Al3+ (0.38 mM) showed no influence on volumetric ethanol production (P = 0.68). Addition of 0.074 mM Co2+ inhibited biomass growth of ATCC 58784 by 13% and volumetric ethanol production by 10%. The biomass growth and volumetric ethanol production of ATCC 58784 was arrested by the addition of 0.33 mM of Ni2+ by 53 and 65%, respectively.


Trace metal Ethanol production Pichia stipitis Xylose 


  1. 1.
    Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33. doi: 10.1016/0960-8524(95)00122-0 CrossRefGoogle Scholar
  2. 2.
    Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS (2006) Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem 41:2333–2336. doi: 10.1016/j.procbio.2006.05.004 CrossRefGoogle Scholar
  3. 3.
    Hinman ND, Wright JD, Hoagland W, Wyman CE (1989) Xylose fermentation. An economic analysis. Appl Biochem Biotechnol 20:391–401. doi: 10.1007/BF02936498 CrossRefGoogle Scholar
  4. 4.
    du Preez JC, Prior BA (1985) A quantitative screening of some xylose-fermenting yeast isolates. Biotechnol Lett 7:241–246. doi: 10.1007/BF01042370 CrossRefGoogle Scholar
  5. 5.
    Du Preez JC, Bosch WM, Prior BA (1986) The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis. Appl Microbiol Biotechnol 23:228–233Google Scholar
  6. 6.
    Skoog K, Hahn-Hägerdal B (1988) Xylose fermentation. Enzym Microb Technol 10:66–80. doi: 10.1016/0141-0229(88)90001-4 CrossRefGoogle Scholar
  7. 7.
    Sreenath HK, Jeffries TW (2000) Production of ethanol from wood hydrolyzate by yeasts. Bioresour Technol 72:253–260. doi: 10.1016/S0960-8524(99)00113-3 CrossRefGoogle Scholar
  8. 8.
    Slininger PJ, Dien BS, Gorsich SW, Liu ZL (2006) Nitrogen source and mineral optimization enhance d-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Appl Microbiol Biotechnol 72:1285–1296. doi: 10.1007/s00253-006-0435-1 PubMedCrossRefGoogle Scholar
  9. 9.
    Guebel DV, Cordenons A, Cascone O, Giulietti AM, Nudel C (1992) Influence of the nitrogen source on growth and ethanol production by Pichia stipitis NRRL Y-7124. Biotechnol Lett 14:1193–1198. doi: 10.1007/BF01027027 CrossRefGoogle Scholar
  10. 10.
    Stehlik-Tomas V, Zetić VG, Stanzer D, Grba S, Vahčić N (2004) Zinc, copper and manganese enrichment in yeast Saccharomyces cerevisiae. Food Technol Biotechnol 42:115–120Google Scholar
  11. 11.
    Conklin DS, McMaster JA, Culbertson MR, Kung C (1992) COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Mol Cell Biol 12:3678–3688PubMedGoogle Scholar
  12. 12.
    Hu QH, Li XF, Liu H, Du GC, Chen J (2008) Enhancement of methane fermentation in the presence of Ni2+ chelators. Biochem Eng J 38:98–104. doi: 10.1016/j.bej.2007.07.002 CrossRefGoogle Scholar
  13. 13.
    Forzani C, Loulergue C, Lobréaux S, Briat J, Lebrun M (2001) Nickel resistance and chromatin condensation in Saccharomyces cerevisiae expressing a maize high mobility group I/Y protein. J Biol Chem 276:16731–16738. doi: 10.1074/jbc.M007462200 PubMedCrossRefGoogle Scholar
  14. 14.
    Pearce DA, Sherman F (1999) Toxicity of copper, cobalt, and nickel salts is dependent on histidine metabolism in the yeast Saccharomyces cerevisiae. J Bacteriol 181:4774–4779PubMedGoogle Scholar
  15. 15.
    Agbogbo FK, Wenger KS (2006) Effect of pretreatment chemicals on xylose fermentation by Pichia stipitis. Biotechnol Lett 28:2065–2069. doi: 10.1007/s10529-006-9192-6 PubMedCrossRefGoogle Scholar
  16. 16.
    Mahler GF, Guebel DV (1994) Influence of magnesium concentration on growth, ethanol and xylitol production by Pichia stipitis NRRL Y-7124. Biotechnol Lett 16:407–412. doi: 10.1007/BF00245061 CrossRefGoogle Scholar
  17. 17.
    MacDiarmid CW, Gardner RC (1996) Al toxicity in yeast (a role for Mg?). Plant Physiol 112:1101–1109. doi: 10.1104/pp.112.3.1101 PubMedCrossRefGoogle Scholar
  18. 18.
    Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Prod 17:171–176. doi: 10.1016/S0926-6690(02)00095-X CrossRefGoogle Scholar
  19. 19.
    Zhang YS, Zhang ZY, Suzuki K, Maekawa T (2003) Uptake and mass balance of trace metals for methane producing bacteria. Biomass Bioenergy 25:427–433. doi: 10.1016/S0961-9534(03)00012-6 CrossRefGoogle Scholar
  20. 20.
    Tani A, Zhang D, Duine JA, Kawai F (2004) Treatment of the yeast Rhodotorula glutinis with AlCl3 leads to adaptive acquirement of heritable aluminum resistance. Appl Microbiol Biotechnol 65:344–348. doi: 10.1007/s00253-003-1546-6 PubMedCrossRefGoogle Scholar
  21. 21.
    Umbach AL, Siedow JN (2000) The cyanide-resistant alternative oxidases from the fungi Pichia stipitis and Neurospora crassa are monomeric and lack regulatory features of the plant enzyme. Arch Biochem Biophys 378:234–245. doi: 10.1006/abbi.2000.1834 PubMedCrossRefGoogle Scholar
  22. 22.
    Passoth V, Cohn M, Schäfer B, Hahn-Hägerdal B, Klinner U (2003) Analysis of the hypoxia-induced ADH2 promoter of the respiratory yeast Pichia stipitis reveals a new mechanism for sensing of oxygen limitation in yeast. Yeast 20:39–51. doi: 10.1002/yea.933 PubMedCrossRefGoogle Scholar
  23. 23.
    Mrvčić J, Stanzer D, Stehlik-Tomas V, Škevin D, Grba S (2007) Optimization of bioprocess for production of copper-enriched biomass of industrially important microorganism Saccharomyces cerevisiae. J Biosci Bioeng 103:331–337. doi: 10.1263/jbb.103.331 PubMedCrossRefGoogle Scholar
  24. 24.
    MacDiarmid CW, Gardner RC (1998) Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion. J Biol Chem 273:1727–1732. doi: 10.1074/jbc.273.3.1727 PubMedCrossRefGoogle Scholar
  25. 25.
    Zheng K, Pan JW, Ye L, Fu Y, Peng HZ, Wan BY, Gu Q, Bian HW, Han N, Wang JH, Kang B, Pan JH, Shao HH, Wang WZ, Zhu MY (2007) Programmed cell death-involved aluminum toxicity in yeast alleviated by antiapoptotic members with decreased calcium signals. Plant Physiol 143:38–49. doi: 10.1104/pp.106.082495 PubMedCrossRefGoogle Scholar
  26. 26.
    Eitinger T, Mandrand-Berthelot MA (2000) Nickel transport systems in microorganisms. Arch Microbiol 173:1–9. doi: 10.1007/s002030050001 PubMedCrossRefGoogle Scholar
  27. 27.
    Nishimura K, Igarashi K, Kakinuma Y (1998) Proton gradient-driven nickel uptake by vacuolar membrane vesicles of Saccharomyces cerevisiae. J Bacteriol 180:1962–1964PubMedGoogle Scholar
  28. 28.
    Broday L, Peng W, Kuo MH, Salnikow K, Zoroddu M, Costa M (2000) Nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res 60:238–241PubMedGoogle Scholar
  29. 29.
    Watson RJ, Heys R, Martin T, Savard M (2001) Sinorhizobium meliloti cells require biotin and either cobalt or methionine for growth. Appl Environ Microbiol 67:3767–3770. doi: 10.1128/AEM.67.8.3767-3770.2001 PubMedCrossRefGoogle Scholar
  30. 30.
    Stadler JA, Schweyen RJ (2002) The yeast iron regulon is induced upon cobalt stress and crucial for cobalt tolerance. J Biol Chem 277:39649–39654. doi: 10.1074/jbc.M203924200 PubMedCrossRefGoogle Scholar
  31. 31.
    Hervouet E, Pecina P, Demont J, AV Simonnet H, Houštěk J, Godinot C (2006) Inhibition of cytochrome c oxidase subunit 4 precursor processing by the hypoxia mimic cobalt chloride. Biochem Biophys Res Commun 344:1086–1093. doi: 10.1016/j.bbrc.2006.04.014 PubMedCrossRefGoogle Scholar
  32. 32.
    Sajani LS, Mohan MP (1998) Cobalt resistance in Neurospora crassa: overproduction of a cobaltoprotein in a resistant strain. Biometals 11:33–40. doi: 10.1023/A:1009205307125 CrossRefGoogle Scholar
  33. 33.
    Lee H, Bien CM, Hughes AL, Espenshade PJ, Kwon-Chung KJ, Chang YC (2007) Cobalt chloride, a hypoxia-mimicking agent, targets sterol synthesis in the pathogenic fungus Cryptococcus neoformans. Mol Microbiol 65:1018–1033. doi: 10.1111/j.1365-2958.2007.05844.x PubMedCrossRefGoogle Scholar
  34. 34.
    Vanni A, Pessione E, Anfossi L, Baggiani C, Cavaletto M, Gulmini M, Giunta C (2000) Properties of a cobalt-reactivated form of yeast alcohol dehydrogenase. J Mol Catal, B Enzym 9:283–291. doi: 10.1016/S1381-1177(99)00108-3 CrossRefGoogle Scholar
  35. 35.
    Schmiedeskamp M, Klevit RE (1997) Paramagnetic cobalt as a probe of the orientation of an accessory DNA-binding region of the yeast ADR1 zinc-finger protein. Biochemistry 36:14003–14011. doi: 10.1021/bi971364f PubMedCrossRefGoogle Scholar
  36. 36.
    Cavaletto M, Pessione E, Vanni A, Giunta C (2000) Improved resistance to transition metals of a cobalt-substituted alcohol dehydrogenase 1 from Saccharomyces cerevisiae. J Biotechnol 84:87–91. doi: 10.1016/S0168-1656(00)00344-8 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2008

Authors and Affiliations

  • Yuan Li
    • 1
  • Zhenya Zhang
    • 1
  • Zhongfang Lei
    • 2
  • Yingnan Yang
    • 1
  • Motoo Utsumi
    • 1
  • Norio Sugiura
    • 1
  1. 1.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Department of Environmental Science and EngineeringFudan UniversityShanghaiChina

Personalised recommendations