Microalgae as a raw material for biofuels production

  • Luisa GouveiaEmail author
  • Ana Cristina Oliveira
Original Paper


Biofuels demand is unquestionable in order to reduce gaseous emissions (fossil CO2, nitrogen and sulfur oxides) and their purported greenhouse, climatic changes and global warming effects, to face the frequent oil supply crises, as a way to help non-fossil fuel producer countries to reduce energy dependence, contributing to security of supply, promoting environmental sustainability and meeting the EU target of at least of 10% biofuels in the transport sector by 2020. Biodiesel is usually produced from oleaginous crops, such as rapeseed, soybean, sunflower and palm. However, the use of microalgae can be a suitable alternative feedstock for next generation biofuels because certain species contain high amounts of oil, which could be extracted, processed and refined into transportation fuels, using currently available technology; they have fast growth rate, permit the use of non-arable land and non-potable water, use far less water and do not displace food crops cultures; their production is not seasonal and they can be harvested daily. The screening of microalgae (Chlorella vulgaris, Spirulina maxima, Nannochloropsis sp., Neochloris oleabundans, Scenedesmus obliquus and Dunaliella tertiolecta) was done in order to choose the best one(s), in terms of quantity and quality as oil source for biofuel production. Neochloris oleabundans (fresh water microalga) and Nannochloropsis sp. (marine microalga) proved to be suitable as raw materials for biofuel production, due to their high oil content (29.0 and 28.7%, respectively). Both microalgae, when grown under nitrogen shortage, show a great increase (~50%) in oil quantity. If the purpose is to produce biodiesel only from one species, Scenedesmus obliquus presents the most adequate fatty acid profile, namely in terms of linolenic and other polyunsaturated fatty acids. However, the microalgae Neochloris oleabundans, Nannochloropsis sp. and Dunaliella tertiolecta can also be used if associated with other microalgal oils and/or vegetable oils.


Neochloris oleoabundans Scenedesmus obliquus Nannochloropsis sp. Dunaliella tertiolecta Lipids Biofuels Biodiesel 



The authors would like to acknowledge Doutora Narcisa Bandarra from IPIMAR for the fatty acid analysis and also Mrs. Ana Melo and Mr. Roberto Medeiros for the experimental work.


  1. 1.
    Al-Widyan MI, Al-Shyoukh AO (2002) Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresour Technol 85:253–256. doi: 10.1016/S0960-8524(02)00135-9 PubMedCrossRefGoogle Scholar
  2. 2.
    Antolin G, Tinaut FV, Briceno Y, Castano V, Perez C, Ramirez AI (2002) Optimisation of biodiesel production by sunflower oil transesterification. Bioresour Technol 83:111–114. doi: 10.1016/S0960-8524(01)00200-0 PubMedCrossRefGoogle Scholar
  3. 3.
    Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, LondonGoogle Scholar
  4. 4.
    Biofuels Media Ltd (2007) Bringing the biofuel markets together. In: Algae: feedstock of the future. Accessed 8 Sep 2008
  5. 5.
    Bligh EG, Dyer WJ (1959) A rapid method of lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedGoogle Scholar
  6. 6.
    Campbell CJ (1997) The coming oil crisis. Multi-science Publishing Company and petroconsultants S.A, Essex, EnglandGoogle Scholar
  7. 7.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi: 10.1016/j.biotechadv.2007.02.001 PubMedCrossRefGoogle Scholar
  8. 8.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. doi: 10.1016/j.tibtech.2007.12.002 PubMedCrossRefGoogle Scholar
  9. 9.
    Cockerill S, Martin C (2008) Are biofuels sustainable? The EU perspective. Biotechnol Biofuels 1:9. doi: 10.1186/1754-6834-1-9 PubMedCrossRefGoogle Scholar
  10. 10.
    Danielo O (2005) An algae-based fuel. Biofuture 255:1–4Google Scholar
  11. 11.
    Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama S (1994) Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73:1855–1857. doi: 10.1016/0016-2361(94)90211-9 CrossRefGoogle Scholar
  12. 12.
    European Standard EN 5509 (2000) Animal and vegetable fats and oils—preparation of methyl esters of fatty acidsGoogle Scholar
  13. 13.
    European Standard EN 14111 (2003) Fat and oil derivatives—fatty acid methyl esters (FAME)—determination of iodine valueGoogle Scholar
  14. 14.
    European Standard EN 14214 (2004) Automotive fuels—fatty acid methyl esters (FAME) for diesel engines—requirements and test methodsGoogle Scholar
  15. 15.
    Eurostat (2007) Online database of the European Union, 2920 Luxembourg. Accessed 8 May 2007
  16. 16.
    Ginzburg BZ (1993) Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy. Renew Energy 3:249–252. doi: 10.1016/0960-1481(93)90031-B CrossRefGoogle Scholar
  17. 17.
    Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60 10.1002/(SICI)1097-0290(19960705)51:1<;51::AID-BIT6>;3.0.CO;2-#PubMedCrossRefGoogle Scholar
  18. 18.
    Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635. doi: 10.1016/S0141-0229(00)00266-0 PubMedCrossRefGoogle Scholar
  19. 19.
    Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB (2001) Preparation and characterization of bio-diesels from various bio-oils. Bioresour Technol 8:53–62. doi: 10.1016/S0960-8524(01)00051-7 CrossRefGoogle Scholar
  20. 20.
    Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756. doi: 10.1007/s00253-008-1625-9 PubMedCrossRefGoogle Scholar
  21. 21.
    Liu ZY, Wang GC, Zhou BC (2007) Effect of iron growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722. doi: 10.1016/j.biortech.2007.09.073 PubMedCrossRefGoogle Scholar
  22. 22.
    Maeda K, Owada M, Kimura N, Omata K, Karube J (1995) CO2 fixation from the flue gas on coal—red thermal power plant by microalgae. Energy Convers Manage 36:717–720. doi: 10.1016/0196-8904(95)00105-M CrossRefGoogle Scholar
  23. 23.
    Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846. doi: 10.1016/j.biortech.2005.04.008 PubMedCrossRefGoogle Scholar
  24. 24.
    Milne TA, Evans RJ, Nagle N (1990) Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape selective zeolites. Biomass 21:219–232. doi: 10.1016/0144-4565(90)90066-S CrossRefGoogle Scholar
  25. 25.
    Minowa T, Yokoyama SY, Kishimoto M, Okakurat T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738. doi: 10.1016/0016-2361(95)80001-X CrossRefGoogle Scholar
  26. 26.
    Natrah F, Yosoff FM, Shariff M, Abas F, Mariana NS (2008) Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. J Appl Phycol. doi: 10.1007/s10811-007-9192-5
  27. 27.
    Rana R, Spada V (2007) Biodiesel production from ocean biomass. In: Proceedings of the 15th European conference and exhibition, BerlinGoogle Scholar
  28. 28.
    Rodolfi L, Bassi N, Padovani G, Bonini G, Zitelli GC, Biondi N, Tredici MR (2007) Lipid production from microalgae: strain selection, induction of lipid synthesis and outdoor cultivation in pilot photobioreactors. In: Proceedings of the 15th European conference and exhibition, BerlinGoogle Scholar
  29. 29.
    Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of energy’s aquatic species program-biodiesel from algae. National Renewable Energy Laboratory, GoldenGoogle Scholar
  30. 30.
    Siler-Marinkovic S, Tomasevic A (1998) Transesterification of sunflower oil in situ. Fuel 77(12):1389–1391. doi: 10.1016/S0016-2361(98)00028-3 CrossRefGoogle Scholar
  31. 31.
    Sims B (2007) Biodiesel: a global perspective. Biodiesel magazine.
  32. 32.
    Solovchenco AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incise. J Appl Phycol 20:245–251. doi: 10.1007/s10811-007-9233-0 CrossRefGoogle Scholar
  33. 33.
    Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae—review. J Biosci Bioeng 101:87–96. doi: 10.1263/jbb.101.87 PubMedCrossRefGoogle Scholar
  34. 34.
    Tickell J (2000) From the fryer to the fuel tank. The complete guide to using vegetable oil as an alternative fuel. Tallahasseee, USAGoogle Scholar
  35. 35.
    Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleabundans. Enzyme Microb Technol 5:435–440. doi: 10.1016/0141-0229(83)90026-1 CrossRefGoogle Scholar
  36. 36.
    Tredici M, Zitelli C (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197 10.1002/(SICI)1097-0290(19980120)57:2<;187::AID-BIT7>;3.0.CO;2-JPubMedCrossRefGoogle Scholar
  37. 37.
    Vonshak A (1986) CRC handbook of microalgal mass culture. CRC Press, Boca RatonGoogle Scholar
  38. 38.
    Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36. doi: 10.1007/s00253-007-1285-1 PubMedCrossRefGoogle Scholar
  39. 39.
    Zeiler KG, Heacox DA, Toon ST, Kadam KL, Brown LM (1995) The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel—red power plant flue gas. Energy Convers Manage 36:707–712. doi: 10.1016/0196-8904(95)00103-K CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2008

Authors and Affiliations

  1. 1.Departamento de Energias RenováveisInstituto Nacional de Engenharia, Tecnologia e InovaçãoLisbonPortugal

Personalised recommendations