Advertisement

Enhanced removal of dimethyl sulfide from a synthetic waste gas stream using a bioreactor inoculated with Microbacterium sp. NTUT26 and Pseudomonas putida

  • Chin-Hang Shu
  • Ching-Kuo ChenEmail author
Original Paper

Abstract

The removal of dimethyl sulfide (DMS) from industrial gas streams has received a high priority due to its very low odorous threshold value and relatively low biodegradability compared to other reduced sulfur compounds. A variety of bacteria that utilize DMS as a carbon/energy source have been studied and the degradation pathway elucidated. However, to date, there have been few reports on the industrial application of such bacteria inoculated into a bioreactor for DMS treatment. An additional problem of such systems is the accumulation of intermediate metabolites that strongly impact on DMS removal by the microbe. The results reported here were obtained using a bioreactor inoculated with the H2S-degrader Pseudomonas putida and the DMS-degrader Microbacterium sp. NTUT26 to facilitate removal of metabolic intermediates and DMS. This bioreactor performed well (1.71 g-S/day/kg-dry packing material) in terms of DMS gas removal, based on an evaluation of the apparent kinetics and maximal removal capacity of the system. Under varying conditions (changes in start-up, inlet loading, shutdown, and re-start), the bioreactor inoculated with Microbacterium sp. NTUT26 and P. putida enhanced removal of high concentrations of DMS. Our results suggest that this type of bioreactor system has significant potential applications in treating (industrial) DMS gas streams.

Keywords

Dimethyl sulfide Bioreactor Inoculation Biofiltration 

References

  1. 1.
    Andreae MO (1990) Ocean–atmosphere interactions in the global biogeochemical sulfur cycle. Mar Chem 30:1–29. doi: 10.1016/0304-4203(90)90059-L CrossRefGoogle Scholar
  2. 2.
    Avigad G (1983) A simple spectrophotometric determination of formaldehyde and other aldehydes: application to periodate-oxidized glycol system. Anal Biochem 134:499–504. doi: 10.1016/0003-2697(83)90330-5 PubMedCrossRefGoogle Scholar
  3. 3.
    Bentley R, Chasteen TG (2004) Environmental VOSCs-formation and degradation of dimethyl sulfide, methanethiol and related materials. Chemosphere 55:291–317. doi: 10.1016/j.chemosphere.2003.12.017 PubMedCrossRefGoogle Scholar
  4. 4.
    Bo ID, Heyman J, Vincke J, Verstraete W, Van Langenhove H (2003) Dimethyl sulfide removal from synthetic waste gas using a flat poly(dimethylsiloxane)-coated composite membrane bioreactor. Environ Sci Technol 37:4228–4234. doi: 10.1021/es020168f PubMedCrossRefGoogle Scholar
  5. 5.
    Cha JM, Cha JS, Lee JH (1999) Removal of organo-sulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing microorganisms. Process Biochem 34:659–665. doi: 10.1016/S0032-9592(98)00139-3 CrossRefGoogle Scholar
  6. 6.
    Chan AA (2006) Attempted biofiltration of reduced sulphur compounds from a pulp and paper mill in Northern Sweden. Environ Prog 25:152–160. doi: 10.1002/ep.10131 CrossRefGoogle Scholar
  7. 7.
    Cheng X, Peterkin E, Burlingame GA (2005) A study on volatile organic sulfide causes of odors at Philadelphia’s Northeast Water Pollution Control Plant. Water Res 39:3781–3790. doi: 10.1016/j.watres.2005.07.009 PubMedCrossRefGoogle Scholar
  8. 8.
    Cho KS, Hirai M, Shoda M (1991) Degradation characteristics of hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide by Thiobacillus thioparus DW44 isolated from peat biofilter. J Ferment Bioeng 71:384–389. doi: 10.1016/0922-338X(91)90248-F CrossRefGoogle Scholar
  9. 9.
    Chung YC, Huang C, Tseng CP (1997) Removal of hydrogen sulphide by immobilized Thiobacillus sp. strain CH11 in a biofilter. J Chem Technol Biotechnol 68:58-62. doi:10.1002/(SICI)1097-4660(199705)69:1 < 58::AID-JCTB660 > 3.0.CO;2-HGoogle Scholar
  10. 10.
    Chung YC (2007) Evaluation of gas removal and bacterial community diversity in a biofilter developed to treat composting exhaust gases. J Hazard Mater 144:377–385. doi: 10.1016/j.jhazmat.2006.10.045 PubMedCrossRefGoogle Scholar
  11. 11.
    Chung YC, Ho KK, Tseng CP (2007) Two-stage biofilter for effective NH3 removal from waste gases containing high H2S concentration. J Air Waste Manage Assoc 57:337–347Google Scholar
  12. 12.
    De Zwart JMM, Nelisse PN, Kuenen JG (1996) Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol Lett 20:261–270Google Scholar
  13. 13.
    Fuse H, Ohta M, Takimura O, Murakami K, Inoue H, Yamaoka Y et al (1998) Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem 62:1925–1931. doi: 10.1271/bbb.62.1925 PubMedCrossRefGoogle Scholar
  14. 14.
    Fuse H, Takimura O, Murakami K, Yamaoka Y, Omori T (2000) Utilization of dimethyl sulfide as a sulfur source with the aid of light by Marinobacterium sp. strain DMS-S1. Appl Environ Microbiol 66:5527–5532. doi: 10.1128/AEM.66.12.5527-5532.2000 PubMedCrossRefGoogle Scholar
  15. 15.
    Geng AL, Chen XG, Gould WD, Ng YL, Yan R, Lee CC et al (2004) Removal of odorous sulphur-containing gases by a new isolate from activated sludge. Water Sci Technol 50:291–297PubMedGoogle Scholar
  16. 16.
    Hanlon SP, Holt RA, Moore GR, McEwan AG (1994) Isolation and characterization of a strain of Rhodobacter sulfidophilus: a bacterium which grows autotrophically with dimethylsulphide as electron donor. Microbiol 140:1953–1958CrossRefGoogle Scholar
  17. 17.
    Hirai M, Ohtake M, Shoda M (1990) Removal kinetic of hydrogen sulphide, methanethiol and dimethyl sulphide by peat biofilters. J Ferment Bioeng 70:334–339. doi: 10.1016/0922-338X(90)90145-M CrossRefGoogle Scholar
  18. 18.
    Hirano H, Yoshida T, Fuse H, Endo T, Habe H, Nojiri H et al (2003) Marinobacterium sp. strain DMS-S1 uses dimethylsulphide as a sulphur source after light-dependent transformation by excreted flavins. Environ Microbiol 5:503–509. doi: 10.1046/j.1462-2920.2003.00444.x PubMedCrossRefGoogle Scholar
  19. 19.
    Horinouchi M, Kasuga K, Nojiri H, Yamane H, Omori T (1997) Cloning and characterization of genes encoding an enzyme which oxidizes dimethyl sulfide in Acinetobacter sp. strain 20B. FEMS Microbiol Lett 155:99–105. doi: 10.1111/j.1574-6968.1997.tb12692.x PubMedCrossRefGoogle Scholar
  20. 20.
    Ito T, Miyaji T, Nakagawa T, Tomizuka N (2007) Degradation of dimethyl disulfide by Pseudomonas fluorescens strain 76. Biosci Biotechnol Biochem 71:366–370. doi: 10.1271/bbb.60295 PubMedCrossRefGoogle Scholar
  21. 21.
    Juliette LY, Hyman MR, Arp DJ (1993) Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds: thioethers are oxidized to sulfoxides by ammonia monooxygenase. Appl Environ Microbiol 59:3718–3727PubMedGoogle Scholar
  22. 22.
    Kim JY, Kim BW (2003) Removal of dimethyl sulfide in ceramic biofilters immobilized with Thiobacillus thioparus TK-m. J Microbiol Biotechnol 13:866–871Google Scholar
  23. 23.
    Laidler KJ (1958) The chemical kinetics of enzyme action. Oxford University Press, OxfordGoogle Scholar
  24. 24.
    Park SJ, Cho KS, Hirai M, Shoda M (1993) Removability of malodorous gases from a night soil treatment plant by a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44. J Ferment Bioeng 76:55–59. doi: 10.1016/0922-338X(93)90053-B CrossRefGoogle Scholar
  25. 25.
    Phae CG, Shoda M (1991) A new fungus which degrades hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide. Biotechnol Lett 13:375–380. doi: 10.1007/BF01027686 CrossRefGoogle Scholar
  26. 26.
    Pol A, Op den Camp HJ, Mees SG, Kersten MA, van der Drift C (1994) Isolation of a dimethylsulfide-utilizing Hyphomicrobium species and its application in biofiltration of polluted air. Biodegradation 5:105–112. doi: 10.1007/BF00700635 PubMedCrossRefGoogle Scholar
  27. 27.
    Ruokojärvi A, Ruuskanen J, Martikainen PJ, Olkkonen M (2001) Oxidation of gas mixtures containing dimethyl sulfide, hydrogen sulfide, and methanethiol using a two-stage biotrickling filter. J Air Waste Manage Assoc 51:11–16Google Scholar
  28. 28.
    Sandaa RA, Enger O, Torsvik V (1999) Abundance and diversity of Archaea in heavy-metal-contaminated soils. Appl Environ Microbiol 65:3293–3297PubMedGoogle Scholar
  29. 29.
    Sercu B, Nunez D, Van-Langenhove H, Aroca G, Verstraete W (2005) Operational and microbiological aspects of a bioaugmented two-stage biotrickling filter removing hydrogen sulfide and dimethyl sulfide. Biotechnol Bioeng 90:259–269. doi: 10.1002/bit.20443 PubMedCrossRefGoogle Scholar
  30. 30.
    Smet E, Chasaya G, Van Langenhove H, Verstraete W (1996) The effect of inoculation and the type of carrier material used on the biofiltration of methyl sulphides. Appl Microbiol Biotechnol 45:293–298. doi: 10.1007/s002530050686 CrossRefGoogle Scholar
  31. 31.
    Tiwaree RS, Cho KS, Hirai M, Shoda M (1992) Biological deodorization of dimethyl sulfide using different fabrics as the carriers of microorganisms. Appl Biochem Biotechnol 32:135–148. doi: 10.1007/BF02922154 PubMedCrossRefGoogle Scholar
  32. 32.
    Tsai CH, Huang YJ, Chen JC, Liao WT (2003) Deodorization of dimethyl sulfide using a discharge approach at room temperature. J Air Waste Manage Assoc 53:1225–1232Google Scholar
  33. 33.
    Visscher PT, Taylor BF (1993) A new mechanism for the aerobic catabolism of dimethyl sulfide. Appl Environ Microbiol 59:3784–3789PubMedGoogle Scholar
  34. 34.
    Visscher PT, van Gemerden H (1991) Photo-autotrophic growth of Thiocapsa roseopersicina on dimethyl sulfide. FEMS Microbiol Lett 81:247–250. doi: 10.1111/j.1574-6968.1991.tb04766.x CrossRefGoogle Scholar
  35. 35.
    Wani AH, Lau AK, Branion MR (1999) Biofiltration control of pulping odors-hydrogen sulfide: performance, microkinetics and coexistence effects of organo-sulfur species. J Chem Technol Biotechnol 74:9–16. doi:10.1002/(SICI)1097-4660(199901)74:1<9::AID-JCTB981>3.0.CO;2-BCrossRefGoogle Scholar
  36. 36.
    Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290. doi: 10.1111/j.1574-6976.2000.tb00542.x PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang L, Hirai M, Shoda M (1991) Removal characteristics of dimethyl sulfide, methanethiol and hydrogen sulfide by Hyphomicrobium sp. I55 isolated from peat biofilter. J Ferment Bioeng 72:392–396. doi: 10.1016/0922-338X(91)90093-V CrossRefGoogle Scholar
  38. 38.
    Zhang L, Kuniyoshi I, Hirai M, Shoda M (1991) Oxidation of dimethyl sulfide by Pseudomonas acidovorans DMR-11 isolated from peat biofilter. Biotechnol Lett 13:223–228. doi: 10.1007/BF01025822 CrossRefGoogle Scholar
  39. 39.
    Zhang YF, Liss SN, Allen DG (2006) The effects of methanol on the biofiltration of dimethyl sulfide in inorganic biofilters. Biotechnol Bioeng 95:734–743. doi: 10.1002/bit.21033 PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2008

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringNational Central UniversityJhongliTaiwan, ROC
  2. 2.Institute of BiotechnologyNational Taipei University of TechnologyTaipeiTaiwan, ROC

Personalised recommendations