Journal of Industrial Microbiology & Biotechnology

, Volume 35, Issue 9, pp 981–990 | Cite as

Characterization and large-scale production of recombinant Streptoverticillium platensis transglutaminase

  • Shie-Jea Lin
  • Yi-Fang Hsieh
  • Li-An Lai
  • Mei-Li Chao
  • Wen-Shen Chu
Original Paper


Recombinant Streptomyces platensis transglutaminase (MtgA) produced by the Streptomyces lividans transformant 25-2 was purified by ammonium sulfate fractionation, followed by CM-Sepharose CL-6B fast flow, and blue-Sepharose fast flow chromatography. The purification factor was ~33.2-fold, and the yield was 65%. The molecular weight of the purified recombinant MtgA was 40.0 KDa as estimated by SDS-PAGE. The optimal pH and the temperature for the enzyme activity were 6.0 and 55 °C, respectively, and the enzyme was stable at pH 5.0–6.0 and at temperature 45–55 °C. Enzyme activity was not affected by Ca2+, Li+, Mn2+, Na+, Fe3+, K+, Mg2+, Al3+, Ba2+, Co2+, EDTA, or IAA but was inhibited by Fe2+, Pb2+, Zn2+, Cu2+, Hg2+, PCMB, NEM, and PMSF. Optimization of the fermentation medium resulted in a twofold increase of recombinant MtgA activity in both flasks (5.78 U/ml) and 5-l fermenters (5.39 U/ml). Large-scale productions of the recombinant MtgA in a 30-l air-lift fermenter and a 250-l stirred-tank fermenter were fulfilled with maximal activities of 5.36 and 2.54 U/ml, respectively.


Large-scale production Properties Purification Recombinant Streptomyces platensis Transglutaminase 





Streptomyces platensis transglutaminase


SDS-polyacrylamide gel electrophoresis


Ethylenediamine tetraacetic acid


Iodoacetic acid




Phenyl methyl sulfonyl fluoride




  1. 1.
    Folk JE, Chung SI (1985) Transglutaminases. Methods Enzymol 113:358–375. doi:10.1016/S0076-6879(85)13049-1 PubMedCrossRefGoogle Scholar
  2. 2.
    Aeschlimann D, Paulsson M (1994) Transglutaminases: protein cross-linking enzymes in tissues and body fluids. Thromb Haemost 71:402–415PubMedGoogle Scholar
  3. 3.
    Folk JE, Finlayson JS (1997) The ε-γ-(glutamyl) lysine crosslink and the catalytic role of transglutaminases. Adv Protein Chem 31:1–133. doi:10.1016/S0065-3233(08)60217-X CrossRefGoogle Scholar
  4. 4.
    Muszbek L, Yee VC, Hevessy Z (1999) Blood coagulation factor XIII: structure and function. Thromb Res 94:271–305. doi:10.1016/S0049-3848(99)00023-7 PubMedCrossRefGoogle Scholar
  5. 5.
    Yasueda H, Nakanishi K, Kawakawa Y, Nagase K, Motoki M, Mastsui H (1995) Tissue-type transglutaminase from red sea bream (Paris major): sequence analysis of the cDNA and functional expression in Escherichia coli. Eur J Biochem 232:411–419. doi:10.1111/j.1432-1033.1995.tb20826.x PubMedCrossRefGoogle Scholar
  6. 6.
    Kang H, Cho YD (1996) Purification and properties of transglutaminase from soybean (Glycine max) leaves. Biochem Biophys Res Commun 223:288–292. doi:10.1006/bbrc.1996.0886 PubMedCrossRefGoogle Scholar
  7. 7.
    Wodzinska JM (2005) Transglutaminases as targets for pharmacological inhibition. Mini Rev Med Chem 5:279–292PubMedGoogle Scholar
  8. 8.
    Anwar R, Miloszewski KJ (1999) Factor XIII deficiency. Br J Haematol 107:468–484. doi:10.1046/j.1365-2141.1999.01648.x PubMedCrossRefGoogle Scholar
  9. 9.
    Tosetto A, Castaman G, Rodeghiero F (1993) Acquired plasma factor XIII deficiencies. Haematologica 78:5–10PubMedGoogle Scholar
  10. 10.
    Casadio R, Polverini E, Mariani P, Spinozzi F, Carsughi F, Fontana A, Polverino de Laureto P, Matteucci G, Bergamini CM (1999) The structural basis for the regulation of tissue transglutaminase by calcium ions. Eur J Biochem 262:672–679. doi:10.1046/j.1432-1327.1999.00437.x PubMedCrossRefGoogle Scholar
  11. 11.
    Nielsen PM (1995) Reactions and potential industrial applications of transglutaminase. Food Biotechnol 9:119–156CrossRefGoogle Scholar
  12. 12.
    Zhu Y, Rinzema A, Tramper J, Bol J (1995) Microbial transglutaminase-a review of its production and application in food processing. Appl Microbiol Biotechnol 44:277–282. doi:10.1007/BF00169916 CrossRefGoogle Scholar
  13. 13.
    Yokoyama K, Nio N, Kikuchi Y (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64:447–454. doi:10.1007/s00253-003-1539-5 PubMedCrossRefGoogle Scholar
  14. 14.
    Chen RN, Ho HO, Sheu MT (2005) Characterization of collagen matrices crosslinked using microbial transglutaminase. Biomaterials 26:4229–4235. doi:10.1016/j.biomaterials.2004.11.012 PubMedCrossRefGoogle Scholar
  15. 15.
    Kamiya N, Doi S, Tominaga J, Ichinose H, Goto M (2005) Transglutaminase-mediated protein immobilization to casein nanolayers created on a plastic surface. Biomacromolecules 6:35–38. doi:10.1021/bm0494895 PubMedCrossRefGoogle Scholar
  16. 16.
    Paguirigan A, Beebe DJ (2006) Gelatin based microfluidic devices for cell culture. Lab Chip 6:407–413. doi:10.1039/b517524k PubMedCrossRefGoogle Scholar
  17. 17.
    Ito A, Mase A, Takizawa Y, Shinkai M, Honda H, Haata K-I, Kobayashi T (2003) Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering. J Biosci Bioeng 93:196–199Google Scholar
  18. 18.
    Chau DY, Collighan RJ, Verderio EA, Addy VL, Griffin M (2005) The use of transglutaminase as a novel biocatalyst in the modification of collagen for the development of new biomaterials. Biomaterials 26:6518–6529. doi:10.1016/j.biomaterials.2005.04.017 PubMedCrossRefGoogle Scholar
  19. 19.
    Josten A, Haalck L, Spener F, Meusel M (2000) Application of microbial transglutaminase for the enzymatic biotinylation of antibodies. J Immunol Methods 240:47–54. doi:10.1016/S0022-1759(00)00172-1 PubMedCrossRefGoogle Scholar
  20. 20.
    Chadler P (2006) Formation of novel erythropoietin conjugates using transglutaminase. United States Patent 6995245Google Scholar
  21. 21.
    Fu R-Y, Chen J, Li Y (2005) Heterologous leaky production of transglutaminase in Lactococcus lactis significantly enhances the growth. Appl Environ Microbiol 71:8911–8919. doi:10.1128/AEM.71.12.8911-8919.2005 PubMedCrossRefGoogle Scholar
  22. 22.
    Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R (1989) Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric Biol Chem 53:2613–2617Google Scholar
  23. 23.
    Kanaji T, Ozaki H, Takao T, Kawajiri H, Ide H, Motoki M, Shimonishi Y (1993) Primary structure of microbial transglutaminase from Streptoverticillium sp. strain s-8112. J Biol Chem 268:11565–11572PubMedGoogle Scholar
  24. 24.
    Gerber U, Jucknischke U, Putzien S, Fuchsbauer HL (1994) A rapid and simple method for the purification of transglutaminase from Streptoverticillium mobaraense. Biochem J 299:825–829PubMedGoogle Scholar
  25. 25.
    Tsai GJ, Lin SM, Jiang ST (1996) Transglutaminase from Streptoverticillium ladakanum and application to minced fish product. J Food Sci 61:1234–1238. doi:10.1111/j.1365-2621.1996.tb10968.x CrossRefGoogle Scholar
  26. 26.
    Duran R, Junqua M, Schmitter JM, Gancet C, Goulas P (1998) Purification, characterisation, and gene cloning of transglutaminase from S. cinnamoneum CBS 683.68. Biochim 80:313–319. doi:10.1016/S0300-9084(98)80073-4 CrossRefGoogle Scholar
  27. 27.
    de Barros Soares LHB, Assmann F, Zachia Ayub MA (2003) Purification and properties of transglutaminase produced by Bacillus circulans strain isolated from the amazon environment. Biotechnol Appl Biochem 37:295–299. doi:10.1042/BA20020110 PubMedCrossRefGoogle Scholar
  28. 28.
    Kobayashi K, Hashiguchi KI, Yokozeki K, Yamanaka S (1998) Molecular cloning of the transglutaminase gene from Bacillus subtilis and its expression in Escherichia coli. Biosci Biotechnol Biochem 62:1109–1114. doi:10.1271/bbb.62.1109 PubMedCrossRefGoogle Scholar
  29. 29.
    Lin YS, Chao ML, Liu CH, Chu WS (2004) Cloning and expression of the transglutaminase gene from Streptoverticillium ladakanum in Streptomyces lividans. Process Biochem 39:591–598. doi:10.1016/S0032-9592(03)00134-1 CrossRefGoogle Scholar
  30. 30.
    Lin YS, Chao ML, Liu CH, Tseng M, Chu WS (2006) Cloning of the gene coding for transglutaminase from Streptomyces platensis and its expression in Streptomyces lividans. Process Biochem 41:519–524. doi:10.1016/j.procbio.2005.09.009 CrossRefGoogle Scholar
  31. 31.
    Yokoyama K, Nakamura N, Saguaro K, Kubota K (2000) Overproduction of microbial transglutaminase in Escherichia coli: In vitro refolding and characterization of the refolded form. Biosci Biotechnol Biochem 64:1263–1270. doi:10.1271/bbb.64.1263 PubMedCrossRefGoogle Scholar
  32. 32.
    Date M, Yokoyama KI, Umezawa Y, Matsui H, Kikuchi Y (2003) Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum. Appl Envion Microbiol 69:3011–3014. doi:10.1128/AEM.69.5.3011-3014.2003 CrossRefGoogle Scholar
  33. 33.
    Chater KF, Hopwood DA, Kieser T, Thompson CJ (1982) Gene cloning in Streptomyces. Curr Top Microbiol Immunol 96:69–95PubMedGoogle Scholar
  34. 34.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of. bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0 PubMedCrossRefGoogle Scholar
  35. 35.
    Neuhoff V, Arold N, Taube D, Ehrhardt W (1989) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. Electrophoresis 9:255–262. doi:10.1002/elps.1150090603 CrossRefGoogle Scholar
  36. 36.
    Hashimoto A, Kobayashi A, Arai K (1982) Thermostability of fish myofibrillar Ca-ATPase and adaptation to environment temperature. Bull Jap Soc Sci Fish 48:671–684Google Scholar
  37. 37.
    DeMeo M, Larget M, Phan-Tan-Luu R, Mathieu D, Dumenil G (1985) Application of experimental designs for optimization of medium and culture conditions in fermentation. Bioscience 4:99–102Google Scholar
  38. 38.
    Washizu K, Ando K, Koikeda S, Hirose S, Matsuura A, Takagi H, Motoki M, Takeuchi K (1994) Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci Biotechnol Biochem 58:82–87PubMedCrossRefGoogle Scholar
  39. 39.
    Negus SS (2002) A novel microbial transglutaminase derived from Strptoverticillium baldaccii. A Thesis of the degree of Doctor of Philosophy of Griffith University, Nathan Campus, QueenslandGoogle Scholar
  40. 40.
    Jiang ST, Lee JJ (1992) Purification, characterization, and utilization of pig plasma factor XIIIa. Agric Food Chem 40:1101–1107. doi:10.1021/jf00019a002 CrossRefGoogle Scholar
  41. 41.
    Ho ML, Leu SZ, Hsieh JE, Jiang ST (2000) Technical approach to simplify the purification method and characterization of microbial transglutaminase produced from Streptoverticillium ladakanum. J Food Sci 65:76–80. doi:10.1111/j.1365-2621.2000.tb15959.x CrossRefGoogle Scholar
  42. 42.
    Motoki M, Seguro K (1998) Transglutaminase and its use for food processing. Trends food Sci Technol 9:204–210. doi:10.1016/S0924-2244(98)00038-7 CrossRefGoogle Scholar
  43. 43.
    Techapun C, Poosaran N, Watanabe M, Sasaki K (2003) Improvement of cellulase-free xylanase production by Streptomyces sp. Ab 106 with optimized stirred type fermenter and repeated fed-batch cultivation using agricultural waste. J Biosci Bioeng 95:298–301PubMedGoogle Scholar
  44. 44.
    Payne GF, DelaCruz N, Coppella SJ (1990) Improved production of heterologous protein from Streptomyces lividans. Appl Microbiol Biotechnol 33:395–400. doi:10.1007/BF00176653 PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2008

Authors and Affiliations

  • Shie-Jea Lin
    • 1
  • Yi-Fang Hsieh
    • 1
  • Li-An Lai
    • 1
  • Mei-Li Chao
    • 1
  • Wen-Shen Chu
    • 1
  1. 1.Bioresource Collection and Research CenterFood Industry Research and Development InstituteHsinchuTaiwan, ROC

Personalised recommendations