Biomass measurement online: the performance of in situ measurements and software sensors

  • Kristiina Kiviharju
  • Kalle Salonen
  • Ulla Moilanen
  • Tero Eerikäinen
Review

Abstract

Biomass measurement is one of the most critical measurements in biotechnological processes. The technologies developed for the measurement of biomass in situ have developed over the years. Because it has been over 10 years since the last review concentrating on practical issues concerning biomass measurements, it is time to evaluate recent developments in the field. This review concentrates on the applications of dielectric spectroscopy, optical density, infrared spectroscopy, and fluorescence for in situ measurement of biomass. The advantages offered by these methods and an economic way of estimating biomass concentration, the software sensors, are considered.

Keywords

Biomass In situ Online measurement Probe Software sensor 

References

  1. 1.
    Acuna G, Latrille E, Beal C, Corrieu G, Cheruy A (1994) Online estimation of biological variables during pH controlled lactic acid fermentations. Biotechnol Bioeng 44:1168–1176CrossRefGoogle Scholar
  2. 2.
    Acuña G, Latrille E, Béal C, Corrieu G (1998) Static and dynamic neural network models for estimating biomass concentration during thermophilic lactic acid bacteria batch cultures. J Ferment Bioeng 85:615–622CrossRefGoogle Scholar
  3. 3.
    Arnold SA, Gaensakoo R, Harvey LM, McNeil B (2002) Use of at-line and in-situ near-infrared spectroscopy to monitor biomass in an industrial fed-batch Escherichia coli process. Biotechnol Bioeng 80:405–413CrossRefGoogle Scholar
  4. 4.
    Arnoux AS, Preziosi-Belloy L, Esteban G, Teissier P, Ghommidh C (2005) Lactic acid bacteria biomass monitoring in highly conductive media by permittivity measurements. Biotechnol Lett 27:1551–1557CrossRefGoogle Scholar
  5. 5.
    Austin GD, Watson RW, D’Amore T (1994) Studies of on-line viable yeast biomass with a capacitance Biomass Monitor. Biotechnol Bioeng 43:337–341CrossRefGoogle Scholar
  6. 6.
    Benfer R, Mayer M, Onken U (1991) Process control in biotechnology with an online viscometer exemplified via penicillin fermentation. Chemie Ingenieur Technik 63:1011–1012CrossRefGoogle Scholar
  7. 7.
    Benoit E, Guellil A, Block JC, Bessière J (1998) Dielectric permittivity measurement of hydrophobic bacterial suspensions: a comparison with the octane adhesion test. J Microbiolog Methods 32:205–211CrossRefGoogle Scholar
  8. 8.
    Benthin S, Nielsen J, Villadsen J (1991) Characterization and application of precise and robust flow-infection analysers for on-line measurement during fermentations. Anal Chim Acta 247:45–50CrossRefGoogle Scholar
  9. 9.
    Boareto AJM, De Souza MB, Valero F, Valdman B (2007) A hybrid neural model (HNM) for the on-line monitoring of lipase production by Candida rugosa. J Chem Technol Biotechnol 82:319–327CrossRefGoogle Scholar
  10. 10.
    Boehl D, Solle D, Hitzmann B, Scheper T (2003) Chemometric modeling with two-dimensional fluorescence data for Claviceps purpurea bioprocess characterization. J Biotechnol 105:179–188CrossRefGoogle Scholar
  11. 11.
    Boon M, Luyben K, Heijnen JJ (1998) The use of online off-gas analyses and stoichiometry in the bio-oxidation kinetics of sulfide minerals. Hydrometallurgy 48:1–26CrossRefGoogle Scholar
  12. 12.
    Cannizzaro C, Gügerli R, Marison I, von Stockar U (2003) On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol Bioeng 84:597–610CrossRefGoogle Scholar
  13. 13.
    Chattaway T, Stephanopoulos GN (1989) An adaptive state estimator for detecting contaminants in bioreactors. Biotechnol Bioeng 34:647–659CrossRefGoogle Scholar
  14. 14.
    Chen LZ, Nguang SK, Li XM, Chen XD (2004) Soft sensors for on-line biomass measurements. Bioprocess Biosyst Eng 26:191–195CrossRefGoogle Scholar
  15. 15.
    Claes JE, Van Impe JF (2000) Combining yield coefficients and exit-gas analysis for monitoring of the baker’s yeast fed-batch fermentation. Bioprocess Eng 22:195–200CrossRefGoogle Scholar
  16. 16.
    Combs RG, Bishop BF (1993) Performance of a commercially available biomass sensor for on-line monitoring of high density Escherichia coli. In: Annual meeting of the society for industrial microbiology, Canada, August 1983Google Scholar
  17. 17.
    Davey CD, Kell DB (1998) The influence of electrode polarization on dielectric spectra, with special reference to capacitive biomass measurements, I. Quantifying the effects on electrode polarization of factors likely to occur during fermentations. Bioelectrochem Bioenerg 46:91–103CrossRefGoogle Scholar
  18. 18.
    Desgranges C, Georges M, Vergoignan C, Durand A (1991) Biomass estimation in solid state fermentation. II. On-line measurements. Appl Microbiol Biotechnol 35:206–209Google Scholar
  19. 19.
    Fehrenbach R, Comberbach M, Pêtre JO (1992) On-line biomass monitoring by capacitance measurement. J Biotechnol 23:303–314CrossRefGoogle Scholar
  20. 20.
    Gheorghiu E, Asami K (1998) Monitoring cell cycle by impedance spectroscopy: experimental and theoretical aspects. Bioelectrochem Bioenerg 45:139–143CrossRefGoogle Scholar
  21. 21.
    Gonzalez-Vara y RA, Vaccari G, Dosi E, Trilli A, Rossi M, Matteuzzi D (2000) Enhanced production of l-(+)-lactic acid in chemostat by Lactobacillus casei DSM 20011 using ion-exchange resins and cross-flow filtration in a fully automated pilot plant controlled via NIR. Biotechnol Bioeng 67:147–156CrossRefGoogle Scholar
  22. 22.
    Greer CW, Beaumier D, Samson R (1989) Application of on-line sensors during growth of the dichloroethane degrading bacterium, Xanthobacter autotrophicus. J Biotechnol 12:261–274CrossRefGoogle Scholar
  23. 23.
    Guan Y, Evans PM, Kemp RB (1998) Specific heat flow rate: an on-line monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy. Biotechnol Bioeng 58:464–477CrossRefGoogle Scholar
  24. 24.
    Haack MB, Eliasson A, Olsson L (2004) On-line cell mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence. J Biotechnol 114:199–208CrossRefGoogle Scholar
  25. 25.
    Hoffmann F, Schmidt M, Rinas U (2000) Simple technique for simultaneous on-line estimation of biomass and acetate from base consumption and conductivity measurements in high-cell density cultures of Escherichia coli. Biotechnol Bioeng 70:358–361CrossRefGoogle Scholar
  26. 26.
    Janelt G, Gerbsch N, Buchholz R (2000) A novel fiber optic probe for on-line monitoring of biomass concentrations. Bioprocess Eng 22:275–279CrossRefGoogle Scholar
  27. 27.
    Jenzsch M, Simutis R, Eisbrenner G, Stueckrath I, Luebbert A (2006) Estimation of biomass concentrations in fermentation processes for recombinant protein production. Bioprocess Biosyst Eng 29:19–27CrossRefGoogle Scholar
  28. 28.
    Jin S, Ye K, Shimizy K, Nikawa J (1996) Application of artificial neural network and fuzzy control for fed-batch cultivation of recombinant Saccharomyces cerevisiae. J Ferment Bioeng 81:412–421CrossRefGoogle Scholar
  29. 29.
    Kemp RB (2001) The application of heat conduction microcalorimetry to study the metabolism and pharmaceutical modulation of cultured mammalian cells. Thermochim Acta 380:229–244CrossRefGoogle Scholar
  30. 30.
    Kiviharju K, Salonen K, Leisola M, Eerikäinen T (2006) Modeling and simulation of Streptomyces peucetius var. caesius N47 cultivation and ε-rhodomycinone production with kinetic equations and neural networks. J Biotechnol 126:365–373CrossRefGoogle Scholar
  31. 31.
    Kiviharju K, Salonen K, Moilanen U, Meskanen E, Leisola M, Eerikäinen T (2007) On-line biomass measurements in bioreactor cultivations: comparison study of two on-line probes. J Ind Microbiol Biotechnol 34:561–566CrossRefGoogle Scholar
  32. 32.
    Kronlöf J (1994) Evaluation of a capacitance probe for determination of viable yeast biomass. In: Proceedings of the 23rd European brewery convention, pp 233–239Google Scholar
  33. 33.
    Larsson C, Blomberg A, Gustafsson L (1991) Use of microcalorimetric monitoring in establishing continuous energy balances and in continuous determinations of substrate and product concentrations of batch-grown Saccharomyces cerevisiae. Biotechnol Bioeng 38:447–458CrossRefGoogle Scholar
  34. 34.
    Lindemann C, Marose S, Scheper T, Nielsen HO, Reardon KF (1999) Fluorescence techniques for bioprocess monitoring. In: Flickinger MC, Drew SW (Eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, USA, pp 1238–1244, ReviewGoogle Scholar
  35. 35.
    Lubenova V, Rocha I, Ferreira EC (2003) Estimation of multiple biomass growth rates and biomass concentration in a class of bioprocesses. Bioprocess Biosyst Eng 25:395–406CrossRefGoogle Scholar
  36. 36.
    Marison I, Von Stockar U (1987) A calorimetric investigation of the aerobic cultivation of Kluyveromyces fragilis on various substrates. Enzyme Microb Technol 9:33–43CrossRefGoogle Scholar
  37. 37.
    Markx GH, Davey CL (1999) The dielectic properties of biological cells at radiofrequencies: applications in biotechnology. Enzyme Microb Technol 25:161–171, ReviewCrossRefGoogle Scholar
  38. 38.
    Markx GH, Davey CL, Kell DB, Morris P (1991) The dielectric permittivity at radio frequencies and the Bruggeman probe: novel techniques for the on-line determination of biomass concentrations in plant cell cultures. J Biotechnol 20:279–290CrossRefGoogle Scholar
  39. 39.
    Marose S, Lindemann C, Scheper T (1998) Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring. Biotechnol Prog 14:63–74CrossRefGoogle Scholar
  40. 40.
    Marose S, Lindemann C, Ulber R, Scheper T (1999) Optical sensor systems for bioprocess monitoring. Trends Biotechnol 17:30–34, ReviewCrossRefGoogle Scholar
  41. 41.
    Mas S, Ossard F, Ghommidh C (2001) On-line determination of flocculating Saccharomyces cerevisiae concentration and growth rate using a capacitance probe. Biotechnol Lett 23:1125–1129CrossRefGoogle Scholar
  42. 42.
    Navrátil M, Norberg A, Lembrén L, Mandenius C-F (2005) On-line multi-analyzer monitoring of biomass, glucose and acetate for growth rate control of a Vibrio cholerae fed-batch cultivation. J Biotechnol 115:67–79CrossRefGoogle Scholar
  43. 43.
    Neves AA, Pereira DA, Vieira LM, Menezes JC (2000) Real time monitoring biomass concentration in Streptomyces clavuligerus cultivations with industrial media using a capacitance probe. J Biotechnol 84:45–52CrossRefGoogle Scholar
  44. 44.
    November EJ, Van Impe JF (2000) Evaluation of on-line viable biomass measurements during fermentations of Candida utilis. Bioprocess Eng 23:473–477CrossRefGoogle Scholar
  45. 45.
    November EJ, Van Impe JF (2002) The tuning of a model-based estimator for the specific growth rate of Candida utilis. Bioprocess Biosyst Eng 25:1–12CrossRefGoogle Scholar
  46. 46.
    Olsson L, Nielsen J (1997) On-line and in situ monitoring of biomass in submerged cultivations. Trends Biotechnol 15:517–522, ReviewCrossRefGoogle Scholar
  47. 47.
    Poirazi P, Leroy F, Georgalaki MD, Aktypis A, De Vuyst L, Tsakalidou E (2007) Use of artificial neural networks and a Gamma-concept-based approach to model growth of and bacteriocin production by Streptococcus macedonicus ACA-DC 198 under simulated conditions of Kasseri cheese production. Appl Environ Microbiol 73:768–776CrossRefGoogle Scholar
  48. 48.
    Sanchez A, Gordillo MA, Montesinos JL, Valero F, Lafuente J (1999) On-line determination of the total lipolytic activity in a four-phase system using a lipase adsorption law. J Biosci Bioeng 87:500–506CrossRefGoogle Scholar
  49. 49.
    Sarrafzadeh MH, Belloy L, Esteban G, Navarro JM, Ghommidh C (2005) Dielectric monitoring of growth and sporulation of Bacillus thuringiensis. Biotechnol Lett 27:511–517CrossRefGoogle Scholar
  50. 50.
    Sarrafzadeh MH, Guiraud JP, Lagneau C, Gacen B, Carron A, Navarro J-M (2005) Growth, sporulation, d-endotoxins synthesis, and toxicity during culture of Bacillus thuringiensis H14. Curr Microbiol 51:75–81CrossRefGoogle Scholar
  51. 51.
    Schwan HP (1957) Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 5:147–209Google Scholar
  52. 52.
    Siano SA (1997) Biomass measurement by inductive permittivity. Biotechnol Bioeng 55:289–304CrossRefGoogle Scholar
  53. 53.
    Sivakesava S, Irudayaraj J, Ali D (2001) Simultaneous determination of multiple components in lactic acid fermentation using FT-MIR, NIR, and FT-Raman spectroscopic techniques. Process Biochem 37:371–378CrossRefGoogle Scholar
  54. 54.
    Smets IY, Bastin GP, Van Impe JF (2002) Feedback stabilization of fed-batch bioreactors: non-monotonic growth kinetics. Biotechnol Prog 18:1116–1125CrossRefGoogle Scholar
  55. 55.
    Sonnleitner B (1992) On-line measurement of cell concentration. Process Control Qual 2:97–104, ReviewGoogle Scholar
  56. 56.
    Stärk E, Hitzmann B, Schügerl K, Scheper T, Fuchs C, Köster D, Märkl H (2002) In-situ-fluorescence-probes: a useful tool for non-invasive bioprocess monitoring. Adv Biochem Eng Biotechnol 74:21–38, ReviewGoogle Scholar
  57. 57.
    Su WW, Liu B, Lu W-B, Xu N-S, Du G-C, Tan J-L (2005) Observer-based online compensation of inner filter effect in monitoring fluorescence of GFP-expressing plant cell cultures. Biotechnol Bioeng 91:213–226CrossRefGoogle Scholar
  58. 58.
    Tamburini E, Vaccari G, Tosi S, Trilli A (2003) Near-infrared spectroscopy: a tool for monitoring submerged fermentation processes using an immersion optical-fiber probe. Appl Spectrosc 57:132–138CrossRefGoogle Scholar
  59. 59.
    Tartakovsky B, Sheintuch M, Hilmer J-M, Scheper T (1996) Application of scanning fluorometry for monitoring of a fermentation process. Biotechnol Prog 12:126–131CrossRefGoogle Scholar
  60. 60.
    Vaccari G, Dosi E, Trilli A, González-Vara A (1998) Near-infrared spectroscopy as a tool for real-time monitoring and control of fermentations: an application to lactic acid production. Semin Food Anal 3:191–215Google Scholar
  61. 61.
    Vaidyanathan S, Harvey L, McNeil B (2001) Deconvolution of near-infrared spectral information for monitoring mycelial biomass and other key analytes in a submerged fungal bioprocess. Anal Chim Acta 428:41–59CrossRefGoogle Scholar
  62. 62.
    Vaidyanathan S, White S, Harvey L, McNeil B (2003) Influence of morphology on the near-infrared spectra of mycelial biomass and its implications in bioprocess monitoring. Biotechnol Bioeng 82:715–724CrossRefGoogle Scholar
  63. 63.
    Valero F, Lafuente FJ, Sold C, Benito A, Vidal M, Cairó J, Villaverde A (1992) Simultaneous monitoring of intracellular β-galactosidase activity and biomass using flow injection analysis in Escherichia coli batch fermentations. Biotechnol Tech 6:213–218CrossRefGoogle Scholar
  64. 64.
    Vallino JJ, Stephanopoulos GN (1987) Intelligent sensors in biotechnology. Applications for the monitoring of fermentations and cellular metabolism. Ann New York Acad Sci 506:415–430CrossRefGoogle Scholar
  65. 65.
    Veale E, Irudayaraj J, Demirci A (2007) An on-line approach to monitor ethanol fermentation using FTIR spectroscopy. Biotechnol Prog 23:494–500CrossRefGoogle Scholar
  66. 66.
    Wagner KW (1914) The after-effect in dielectrics. Archiv Elektrotech 2:371–387CrossRefGoogle Scholar
  67. 67.
    Wang F-S, Lee W-C, Chang L-L (1998) Online state estimation of biomass based on acid production in Zymomonas mobilis cultures. Bioprocess Eng 18:329–333Google Scholar
  68. 68.
    Wecker A, Onken U (1992) Process control in biotechnology with an online viscosimeter. Pullulan fermentation. Chem Ing Tech 64:539–540CrossRefGoogle Scholar
  69. 69.
    Wu P, Ozturk SS, Blackie JD, Thrift JC, Figueroa C, Naveh D (1995) Evaluation and applications of optical cell density probes in mammalian cell bioreactors. Biotechnol Bioeng 45:495–502CrossRefGoogle Scholar
  70. 70.
    Yardley JE, Kell DB, Barrett J, Davey CL (2000) On-line, real-time measurements of cellular biomass using dielectric spectroscopy. Biotechnol Genetic Eng Rev 17:3–35, ReviewGoogle Scholar
  71. 71.
    Zeiser A, Elias CB, Voyer R, Jardin B, Kamen AA (2000) On-line monitoring of physiological parameters of insect cell cultures during the growth and infection process. Biotechnol Prog 16:803–808CrossRefGoogle Scholar
  72. 72.
    Zhang H, Lennox B (2003) Integrated condition monitoring and control of fed-batch fermentation processes. J Process Control 14:41–50CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2008

Authors and Affiliations

  • Kristiina Kiviharju
    • 1
  • Kalle Salonen
    • 1
  • Ulla Moilanen
    • 1
  • Tero Eerikäinen
    • 1
  1. 1.Department of Biotechnology & Chemical TechnologyHelsinki University of TechnologyTKKFinland

Personalised recommendations