Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives

  • Raj KumarEmail author
  • Sompal Singh
  • Om V. Singh


In view of rising prices of crude oil due to increasing fuel demands, the need for alternative sources of bioenergy is expected to increase sharply in the coming years. Among potential alternative bioenergy resources, lignocellulosics have been identified as the prime source of biofuels and other value-added products. Lignocelluloses as agricultural, industrial and forest residuals account for the majority of the total biomass present in the world. To initiate the production of industrially important products from cellulosic biomass, bioconversion of the cellulosic components into fermentable sugars is necessary. A variety of microorganisms including bacteria and fungi may have the ability to degrade the cellulosic biomass to glucose monomers. Bacterial cellulases exist as discrete multi-enzyme complexes, called cellulosomes that consist of multiple subunits. Cellulolytic enzyme systems from the filamentous fungi, especially Trichoderma reesei, contain two exoglucanases or cellobiohydrolases (CBH1 and CBH2), at least four endoglucanases (EG1, EG2, EG3, EG5), and one β-glucosidase. These enzymes act synergistically to catalyse the hydrolysis of cellulose. Different physical parameters such as pH, temperature, adsorption, chemical factors like nitrogen, phosphorus, presence of phenolic compounds and other inhibitors can critically influence the bioconversion of lignocellulose. The production of cellulases by microbial cells is governed by genetic and biochemical controls including induction, catabolite repression, or end product inhibition. Several efforts have been made to increase the production of cellulases through strain improvement by mutagenesis. Various physical and chemical methods have been used to develop bacterial and fungal strains producing higher amounts of cellulase, all with limited success. Cellulosic bioconversion is a complex process and requires the synergistic action of the three enzymatic components consisting of endoglucanases, exoglucanases and β-glucosidases. The co-cultivation of microbes in fermentation can increase the quantity of the desirable components of the cellulase complex. An understanding of the molecular mechanism leading to biodegradation of lignocelluloses and the development of the bioprocessing potential of cellulolytic microorganisms might effectively be accomplished with recombinant DNA technology. For instance, cloning and sequencing of the various cellulolytic genes could economize the cellulase production process. Apart from that, metabolic engineering and genomics approaches have great potential for enhancing our understanding of the molecular mechanism of bioconversion of lignocelluloses to value added economically significant products in the future.


Lignocelluloses Bioconversion Cellulases β-Glucosidase Metabolic engineering 



Authors are thankful to the reviewers and the editorial team for their insightful suggestions regarding the review content.


  1. 1.
    Adams JJ, Pal G, Yam K, Spencer HL, Jia Z, Smith SP (2005) Purification and crystallization of a trimodular complex comprising the type II cohesin–dockerin interaction from the cellulosome of Clostridium thermocellum. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:46–48PubMedCrossRefGoogle Scholar
  2. 2.
    Amon T, Amon B, Kryvoruchko V, Machmuller A, Hopfner-Sixt K, Bodiroza V, Hrbek R, Friedel J, Potsch E, Wagentristl H, Schreiner M, Zollitsch W (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol 98:3204–3212PubMedCrossRefGoogle Scholar
  3. 3.
    Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35PubMedCrossRefGoogle Scholar
  4. 4.
    Arora DS, Sandhu DK (1986) Degradation of cellulosic residues by Polyporous versicolor and the effect of moisture contents and phenolic compounds. Acta Biotechnol 6:293–297CrossRefGoogle Scholar
  5. 5.
    Aylward JH, Gobius KS, Xue G-P, Simpson GD, Dalrymple BP (1999) The Neocallimastrix patriciarum cellulase, CelD, contains three almost identical catalytic domains with high specific activity on Avicel. Enzyme Microb Technol 24:609–614CrossRefGoogle Scholar
  6. 6.
    Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58: 521–554PubMedCrossRefGoogle Scholar
  7. 7.
    Bisaria VS, Ghose TK (1981) Biodegradation of cellulosic material: substrate, microorganism, enzyme and products. Enzyme Microbiol Technol 3:91–104CrossRefGoogle Scholar
  8. 8.
    Blackwell J (1992) Cellulose and other natural polymer system: biogenesis, structure and degradation. In: Martin AM (ed) Bioconversion of wastes material to industrial products. Blackie Acad Prof, London, SEI 8 HN, pp 197–246Google Scholar
  9. 9.
    Bonatti M, Karnopp P, Soares HM, Furlan SA (2004) Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chem 88:425–428CrossRefGoogle Scholar
  10. 10.
    Bronnenmeier K, Staudenbauer WL (1988) Purification and properties of an extracellular β-glucosidase from the cellulolytic thermophilic Clostridium stercorarium. Appl Microbiol Biotechnol 28:380–386CrossRefGoogle Scholar
  11. 11.
    Brummell DA (2006) Cell wall disassembly in ripening fruit. Funct Plant Biol 33:103–119CrossRefGoogle Scholar
  12. 12.
    Caulfied DF, Moore WE (1974) Effect of varying crystallinity of cellulose on enzymatic hydrolysis. Wood Sci 6:375–379Google Scholar
  13. 13.
    Chaudhary LC, Singh R, Kamra DN (1994) Biodelignification of sugar cane bagasse by Pleurotus florida and Pleurotus cornucopiae. Indian J Microbiol 34:55–57Google Scholar
  14. 14.
    Cohen R, Suzuki MR, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71:2412–2417PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Das K, Anis M, Mohd. Azemi BMN, Ismail N (1995) Fermentation and recovery of glutamic acid from palm waste hydrolysate by ion-exchange resin column. Biotechnol Bioeng 48:551–555PubMedCrossRefGoogle Scholar
  16. 16.
    Das M, Royer TV, Leff LG (2007) Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Appl Environ Microbiol 73:756–767PubMedCrossRefGoogle Scholar
  17. 17.
    De Ruyck J, Allard G, Maniatis K (1996) An externally fired evaporative gas turbine cycle for small scale biomass CHP production. In: Chartier P et al (eds) Proceedings of the 9th European Bioenergy conference, Pergamon, OxfordGoogle Scholar
  18. 18.
    Demain AL, Newcomb M, David Wu JH (2005) Cellulase, clostridia, and ethanol microbiol. Mol Biol Rev 69:124–154CrossRefGoogle Scholar
  19. 19.
    Dequin S, Baptista E, Barre P (1999) Acidification of grape musts by Saccharomyces cerevisiae wine yeast strains genetically engineered to produce lactic acid. Am J Enol Vitic 50:45–50Google Scholar
  20. 20.
    Doppelbauer P, Esterbauer H, Steiner W, Lafferty RM, Steinmuller H (1987) The use of lignocellulosic wastes for production of cellulose by Trichoderma reesei. Appl Microbiol Biotechnol 26:485–494CrossRefGoogle Scholar
  21. 21.
    Doran JB, Cripe J, Sutton M, Foster B (2000) Fermentations of pectin rich biomass with recombinant bacteria to produce fuel ethanol. Appl Biochem Biotechnol 84:141–152PubMedCrossRefGoogle Scholar
  22. 22.
    Dunlap CE, Thomson J, Chiang LC (1976) Treatment processes to increase microbial digestibility. AICHE Symp Ser 72:58–63Google Scholar
  23. 23.
    Eberhart BM, Beek RS, Goolsby KM (1977) Cellulose of Neurospora crassa. J Microbiol 130:181–186Google Scholar
  24. 24.
    Fairweather JK, Faijes M, Driguez H, Planas A (2002) Specific studies of Bacillus 1,3–1–4-beta-glucanase and application to glycosynthase-catalyzed transglycosylation. Chembiochem 3:866–873PubMedCrossRefGoogle Scholar
  25. 25.
    FAOSTAT (2006) FAO statistical databases.
  26. 26.
    Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 113:506–508CrossRefGoogle Scholar
  27. 27.
    Feng Y, Duan CJ, Pang H, Mo XC, Wu CF, Yu Y, Hu YL, Wei J, Tang JL, Feng JX (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol 75:319–328PubMedCrossRefGoogle Scholar
  28. 28.
    Garg SK, Neelkantan S (1982) Effect of nutritional factors on cellulose enzyme and microbial protein production by Aspergillus terrus and its evaluation. Biotechnol Bioeng 24:109–125PubMedCrossRefGoogle Scholar
  29. 29.
    Goel HC, Ramachandran KB (1983) Studies on adsorption of cellulose of lignocellulosics. J Ferment Technol 3:281–286Google Scholar
  30. 30.
    Gunju RK, Vithayuthil PJ, Murthy SK (1990) Factors influencing production of cellulases by Chaetomium thermophile var. coprophile. Indian J Exp Biol 28:259–264Google Scholar
  31. 31.
    Gupte A, Madamwar D (1997) Solid state fermentation of lignocellulosic waste for cellulose and β-glucosidase production by co-cultivation by Aspergillus ellipticus and Aspergillus fumigatus. Biotechnol Prog 13:166–169CrossRefGoogle Scholar
  32. 32.
    Harris LM, Desai RP, Welker NE, Papoutsakis ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67:1–11PubMedCrossRefGoogle Scholar
  33. 33.
    Hartree MM, Yu EKC, Reid ID, Saddler JN (1987) Suitability of aspen wood biologically delignified with Pheblia tremellosus for fermentation of ethanol or butanol. Appl Microbiol Biotechnol 26:120–125CrossRefGoogle Scholar
  34. 34.
    Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130:114–123PubMedCrossRefGoogle Scholar
  35. 35.
    Hou Y, Wang T, Long H, Zhu H (2007) Cloning, sequencing and expression analysis of the first cellulase gene encoding cellobiohydrolase 1 from a cold-adaptive Penicillium chrysogenum FS010. Acta Biochim Biophys Sin 39:101–107PubMedCrossRefGoogle Scholar
  36. 36.
    Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production African. J Biotechnol 2:602–619Google Scholar
  37. 37.
    Hutnan M, Drtil M, Mrafkova L (2000) Anaerobic biodegradation of sugar beet pulp. Biodegradation 11:203–211PubMedCrossRefGoogle Scholar
  38. 38.
    Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Unverwood SA, Yomano LP, York SW, Zaldivar J, Zhou SD (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866PubMedCrossRefGoogle Scholar
  39. 39.
    Irwin DC, Zhang S, Wilson DB (2000) Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur J Biochem 267:4988–4997PubMedCrossRefGoogle Scholar
  40. 40.
    Ishida N, Saitoh S, Ohnishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H (2006) Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Appl Biochem Biotechnol 129–132:795–807PubMedCrossRefGoogle Scholar
  41. 41.
    Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944CrossRefGoogle Scholar
  42. 42.
    Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326PubMedCrossRefGoogle Scholar
  43. 43.
    Jin F, Cao J, Kishida H, Moriya T, Enomoto H (2007) Impact of phenolic compounds on hydrothermal oxidation of cellulose. Carbohydr Res 342:1129–1132PubMedCrossRefGoogle Scholar
  44. 44.
    Ju LK, Afolabi OA (1999) Waste papers hydrolysate as soluble inducing substrate for cellulose production in continuous culture of Trichoderma reesei. Biotechnol Prog 15:91–97PubMedCrossRefGoogle Scholar
  45. 45.
    Juhasz T, Szengyel Z, Szijarto N, Reczey K (2004) Effect of pH on cellulase production of Trichoderma reesei RUT C30. Appl Biochem Biotechnol 113–116:201–211PubMedCrossRefGoogle Scholar
  46. 46.
    Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143PubMedCrossRefGoogle Scholar
  47. 47.
    Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099–7106PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kato S, Haruta S, Cui ZJ, Ishii M, Yokota A, Igarashi Y (2004) Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int J Syst Evol Microbiol 54:2043–2047PubMedCrossRefGoogle Scholar
  49. 49.
    Kaur G, Kumar S, Satyanarayana T (2004) Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresour Technol 94:239–243PubMedCrossRefGoogle Scholar
  50. 50.
    Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kerr RA, Service RF (2005) What can replace cheap oil—and when? Science 309:101PubMedCrossRefGoogle Scholar
  52. 52.
    Kim DW, Jang YH, Jeong YK (1997) Adsorption behaviors of two cellobiohydrolases and their core proteins from Trichoderma reesei on avicel PH101. Biotechnol Lett 9:893–897CrossRefGoogle Scholar
  53. 53.
    Kim DW, Yang JH, Jeong YK (1988) Adsorption of cellulose from Trichoderma viride on microcrystalline cellulose. Appl Microbiol Biotechnol 28:148–154CrossRefGoogle Scholar
  54. 54.
    Kim J, Yun S (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206CrossRefGoogle Scholar
  55. 55.
    Klyosov AA, Mitevich DV, Sinitsyn AP (1986) Role of the activity and adsorption of cellulose in the efficiency of the enzymatic hydrolysis of amorphous and crystalline cellulose. Biochemistry 25:540–542CrossRefGoogle Scholar
  56. 56.
    Kotchoni OS, Shonukan OO, Gachomo WE (2003) Bacillus pumilus BpCRI 6, a promising candidate for cellulase production under conditions of catabolite repression. Afr J Biotechnol 2:140–146CrossRefGoogle Scholar
  57. 57.
    Kubo Y, Takagi H, Nakamori S (2000) Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain. J Biosci Bioeng 90:619–624PubMedCrossRefGoogle Scholar
  58. 58.
    Kuhad RC, Johri BN (1992) Fungal decomposition of peddy straw: light and scanning microscopic study. Indian J Microbiol 32:255–258Google Scholar
  59. 59.
    Kuhad RC, Kumar M, Singh A (1994) A hypercellololytic mutant of Fusarium oxysporum. Lett Appl Microbiol 19:397–400PubMedCrossRefGoogle Scholar
  60. 60.
    Lambert WD, Du L, Ma Y, Loha V, Burapatana V, Prokop A, Tanner RD, Pamment NB (2003) The effect of pH on the foam fractionation of beta-glucosidase and cellulase. Bioresour Technol 87:247–253PubMedCrossRefGoogle Scholar
  61. 61.
    Lamed R, Bayer EA (1988) The cellulosome of Clostridium thermocellum. Adv Appl Microbiol 33:1–46CrossRefGoogle Scholar
  62. 62.
    Lee SJ, Song H, Lee SY (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72:1939–1948PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Levin DB, Zhu H, Beland M, Cicek N, Holbein BE (2007) Potential for hydrogen and methane production from biomass residues in Canada. Bioresour Technol 98:654–660PubMedCrossRefGoogle Scholar
  64. 64.
    Li YH, Ding M, Wang J, Xu GJ, Zhao F (2006) A novel thermoacidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC-1. Appl Microbiol Biotechnol 70:430–436PubMedCrossRefGoogle Scholar
  65. 65.
    Liu Y, Shi J, Langrish TAG (2006) Water-based extraction of pectin from flavedo and albedo of orange peels. Chem Eng J 120:203–209CrossRefGoogle Scholar
  66. 66.
    Lykidis A, Mavromatis K, Ivanova N, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, Richardson P, Wilson DB, Kyrpides N (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189:2477–2486PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Macris BJ, Kekos D, Evangelidou E (1989) A simple and inexpensive method for cellulose and β-glucosidase production by Neurospora crassa. Appl Microbiol Biotechnol 31:150–151CrossRefGoogle Scholar
  69. 69.
    Madamwar D, Patel S (1992) Formation of cellulases by co-culturing of Trichoderma reesei and Aspergillus niger on cellulosic wastes: In: Malik VS, Sridhar P (eds) Industrial biotechnology. IBH, Oxford, New Delhi, pp 471–478Google Scholar
  70. 70.
    Maheshwari DK, Gohade S, Paul J, Verma A (1994) A paper mill sludge as a potential source for cellulose production by Trichoderma reesei QM9123 and Aspergillus niger using mixed cultivation. Carbohydr Polym 23:161–163CrossRefGoogle Scholar
  71. 71.
    Mane VP, Patil SS, Syed AA, Baig MM (2007) Bioconversion of low quality lignocellulosic agricultural waste into edible protein by Pleurotus sajor-caju (Fr.) Singer. J Zhejiang Univ Sci B 8:745–751PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillen F, Martinez MJ, Gutierrez A, del Rio JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204PubMedGoogle Scholar
  73. 73.
    Martins LF, Kolling D, Camassola M, Dillon AJ, Ramos LP (2008) Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol 99:1417–1424PubMedCrossRefGoogle Scholar
  74. 74.
    Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern and synergism of the enzymes. Biotechnol Bioeng 59:621–634PubMedCrossRefGoogle Scholar
  75. 75.
    Menon K, Rao KK, Pushalkar S (1994) Production of β-glucosidase by Penicillium rubrum O stall. Indian J Exp Biol 32:706–709Google Scholar
  76. 76.
    Mitchell WJ (1998) Physiology of carbohydrate to solvent conversion by Clostridia. Adv Microbiol Physiol 39:31–130CrossRefGoogle Scholar
  77. 77.
    Montane D, Salvado J, Torras C, Farriol X (2002) High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 22:295–304CrossRefGoogle Scholar
  78. 78.
    Mukhopadhyey S, Nandi B (1999) Optimization of cellulose production by Trichoderma reesei ATTCC 26921 using a simplified medium on water hyacinth biomass. J Sci Ind Res 58:107–111Google Scholar
  79. 79.
    Mullar HW, Trosch W, Kuibe KD (1988) Effect of phenolic compounds on cellulose degradation by some white rot basidiomycetes. FEMS Microbiol Lett 49:87–93CrossRefGoogle Scholar
  80. 80.
    Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729PubMedCrossRefGoogle Scholar
  81. 81.
    Nigam JN (2002) Bioconversion of water-hyacinth (Eichornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechnol 97:107–116PubMedCrossRefGoogle Scholar
  82. 82.
    Nigam P, Singh D (1995) Processes for fermentative production of xylitol—a sugar substitute: a review. Process Biochem 30:117–124Google Scholar
  83. 83.
    Ouyang J, Yan M, Kong D, Xu L (2006) A complete protein pattern of cellulase and hemicellulase genes in the filamentous fungus Trichoderma reesei. Biotechnol J 1:1266–1274PubMedCrossRefGoogle Scholar
  84. 84.
    Pardo AG, Forchiassin F (1999) Influence of temperature and pH on cellulase activity and stability in Nectria catalinensis. Rev Argent Microbiol 31:31–35PubMedGoogle Scholar
  85. 85.
    Patel MA, Ou MS, Harbrucker R, Aldrich HC, Buszko ML, Ingram LO, Shanmugam KT (2006) Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Appl Environ Microbiol 72:3228–3235PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Paul J, Verma A (1990) Influence of sugars on endoglucanase and β-xylanase of a bacillus strain. Biotech Lett 22:61–64CrossRefGoogle Scholar
  87. 87.
    Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply (Oak Ridge Natl. Lab., Oak Ridge, TN), ORNL Publ. No. TM-2005_66Google Scholar
  88. 88.
    Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D, Carrera V, Lievense J, Liu CL, Ranzi BM, Frontali L, Alberghina L (1999) Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl Environ Microbiol 65:4211–4215PubMedPubMedCentralGoogle Scholar
  89. 89.
    Rahman SH, Choudhury JP, Ahmad AL, Kamaruddin AH (2007) Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresour Technol 98:554–559PubMedCrossRefGoogle Scholar
  90. 90.
    Rajaram S, Verma A (1990) Production and characterization of xylanase from Bacillus thermoalkalophilus growth on agricultural wastes. Appl Microbiol Biotechnol 34:141–144CrossRefGoogle Scholar
  91. 91.
    Rajendran A, Gunasekaran P, Lakshmanan M (1994) Cellulase activity of Humicola fuscoatra. Indian J Microbiol 34:289–295Google Scholar
  92. 92.
    Reinikainen T, Teleman O, Teeri TT (1995) Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesi. Proteins 22:392–403PubMedCrossRefGoogle Scholar
  93. 93.
    Reyes LM, Noyola TP (1998) Isolation of a hyperxylanolytic Cellulomonas flavigena mutant growing on continuous culture on sugarcane bagasse. Biotechnol Lett 20:443–446CrossRefGoogle Scholar
  94. 94.
    Roberto IC, de Mancilha IM, Sato S (1999) Influence of kla on bioconversion of rice straw hemicellulose hydrolysate to xylitol. Biprocess Eng 21:505–508Google Scholar
  95. 95.
    Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Prod 17:171–176CrossRefGoogle Scholar
  96. 96.
    Rohit D, Jie H, Pin-Ching M, Ali M, Stefan C, Esteban C (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrogen Energy 32:932–939CrossRefGoogle Scholar
  97. 97.
    Romero S, Merino E, Bolivar F, Gosset G, Martinez A (2007) Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl Environ Microbiol 73:5190–5198PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Saha BC (2000) Alpha-L-arabinofuranosidases—biochemistry, molecular biology and application in biotechnology. Biotech Adv 18:403–423CrossRefGoogle Scholar
  99. 99.
    Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649PubMedCrossRefGoogle Scholar
  100. 100.
    Sharma A, Khare SK, Gupta MN (2001) Hydrolysis of rice hull by crosslinked Aspergillus niger cellulase. Bioresour Technol 78:281–284PubMedCrossRefGoogle Scholar
  101. 101.
    Sharma SK, Kalra KL, Kocher S (2004) Fermentation of enzymatic hydrolysate of sunflower hulls for ethanol production and its scale up. Biomass Bioenergy 27:399–402CrossRefGoogle Scholar
  102. 102.
    Shiang M, Linden JC, Mohagheghi A, Grohmam K, Himmel ME (1991) Characterization of eng F, a gene for a non-cellulosomal Clostridium cellulovoras endoglucanase. Gene 182:163–167Google Scholar
  103. 103.
    Singh A, Abidi AB, Darmwal NS, Agrawal AK (1988) Fermentation of corn cobs by Aspergillus niger AS101 for the production of cellulose and single cell protein. Biomembranes 14:153–157Google Scholar
  104. 104.
    Singh A, Abidi AB, Darmwal NS, Agrawal AK (1989) Production of protein and cellulase by Aspergillus niger AS101 in solid state culture. MIRCEN J 5:451–456CrossRefGoogle Scholar
  105. 105.
    Singh A, Abidi AB, Darmwal NS, Agrawal AK (1990) Saccharification of cellulosic substrates by Aspergillus niger cellulase. World J Microbiol Biotechnol 6:333–336PubMedCrossRefGoogle Scholar
  106. 106.
    Singh A, Abidi AB, Darmwal NS, Agrawal AK (1991) Influency of nutritional factors on cellulose production from natural cellulosic residues by Aspergillus niger AS101. Agri Biol Res 7:19–27Google Scholar
  107. 107.
    Smith DC, Wood TM (1991) Xylanase production by Aspergillus awamori, development of a medium and optimization of the fermentation parameters for the production of extracellular xylanase and β-xylosidase while maintaining low protease production. Biotechnol Bioeng 38:883–890PubMedCrossRefGoogle Scholar
  108. 108.
    Somerville C (2006) The billion-ton biofuels vision. Science 312:1277PubMedCrossRefGoogle Scholar
  109. 109.
    Srivastava SK, Gopalkrishnan KS, Ramachandran KB (1987) The production of β-glucosidase in shake-flasks by Aspergillus wentii. J Ferment Technol 65:95–99CrossRefGoogle Scholar
  110. 110.
    Steiner J, Saccha C, Enzyaguirre J (1993) Culture condition for enhanced cellulose production by a native strain of Penicillium purpurogenum. World J Microbiol Biotechnol 10:280–284CrossRefGoogle Scholar
  111. 111.
    Szijarto N, Szengyel Z, Liden G, Reczey K (2004) Dynamics of cellulase production by glucose grown cultures of Trichoderma reesei Rut-C30 as a response to addition of cellulose. Appl Biochem Biotechnol 113–116:115–124PubMedCrossRefGoogle Scholar
  112. 112.
    Takao M, Akiyama K, Sakai T (2002) Purification and characterization of thermostable endo-1,5-α-L-arabinase from a strain of Bacillus thermodenitrificans. Appl Environ Microbiol 68:1639–1646PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Taylor LE, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol 188:3849–3861PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Valaskova V, Baldrian P (2006) Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus production of extracellular enzymes and characterization of the major cellulases. Microbiology 152:3613–3622PubMedCrossRefGoogle Scholar
  115. 115.
    Van-Wyk JPH (1997) Cellulose adsorption–desorption and cellulose saccharification during enzymatic hydrolysis of cellulose material. Biotech Lett 19:775–778CrossRefGoogle Scholar
  116. 116.
    Veen PWD, Ruijter GJG, Visser J (1995) An extreme cre A mutation in Aspergillus nidulans has severe effects on D-glucose utilization. Microbiol 141:2301–2306CrossRefGoogle Scholar
  117. 117.
    Walton NJ, Mayer MJ, Narbad A (2003) Molecules of interest: Vanillin. Phytochemistry 63:505–515PubMedCrossRefGoogle Scholar
  118. 118.
    Weber S, Stubner S, Conrad R (2001) Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl Environ Microbiol 67:1318–1327PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Weil J, Westgate P, Kohlman K, Ladish MR (1994) Cellulose pretreatment of lignocellulosic substrate. Enzyme Microbiol Technol 16:1002–1004CrossRefGoogle Scholar
  120. 120.
    Wojtczak G, Breuil C, Yamuda J, Saddler JN (1987) A comparision of the thermostability of cellulose from various thermophilic fungi. Appl Miocrobiol Biotechnol 27:82–87Google Scholar
  121. 121.
    Wu J, Ju LK (1998) Enhancing enzymatic saccharification of waste news print by surfactant addition. Biotechnol Prog 14:649–652PubMedCrossRefGoogle Scholar
  122. 122.
    Wulff NA, Carrer H, Pascholati SF (2006) Expression and purification of cellulase Xf818 from Xylella fastidiosa in Escherichia coli. Curr Microbiol 53:198–203PubMedCrossRefGoogle Scholar
  123. 123.
    Ye XY, Ng TB, Cheng KJ (2001) Purification and characterization of a cellulase from the ruminal fungus Orpinomyces joyonii cloned in Escherichia coli. Int J Biochem Cell Biol 33:87–94PubMedCrossRefGoogle Scholar
  124. 124.
    Yeoh HH, Tan TK, Koh SK (1986) Kinetic properties of β-glucosidase from Aspergillus ornatus. Appl Microbiol Biotechnol 25:25–28CrossRefGoogle Scholar
  125. 125.
    Yu H, Zeng G, Huang H, Xi X, Wang R, Huang D, Huang G, Li J (2007) Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18:793–802PubMedCrossRefGoogle Scholar
  126. 126.
    Zhou S, Ingram LO (2000) Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (CelZ and CelY) from Erwinia chrysanthemi. J Bacteriol 182:5676–5682PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2008

Authors and Affiliations

  1. 1.Radiation Biotechnology Unit, Division of Radiation Biology and Radiation ProtectionInstitute of Nuclear Medicine and Allied SciencesNew DelhiIndia
  2. 2.Department of PediatricsThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations