Advertisement

Evidence for the role of zinc on the performance of dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B

  • Luís Alves
  • José Matos
  • Rogério Tenreiro
  • Francisco M. Gírio
Short Communication

Abstract

Gordonia alkanivorans strain 1B is able to desulfurize dibenzothiophene (DBT) to 2-hydroxybiphenyl (2-HBP), the final product of the 4S pathway. However, both the cell growth and the rate of desulfurization can be largely affected by the nutrient composition of the growth medium due to cofactor requirements of many enzymes involved in the biochemical pathways. In this work, the effect of several metal ions on the growth and DBT desulfurization by G. alkanivorans was studied. From all the metal ions tested, only the absence of zinc significantly affected the cell growth and the desulfurization rate. By increasing the concentration of Zn from 1 to 10 mg L−1, 2-HBP productivity was improved by 26%. The absence of Zn2+, when sulfate was also used as the only sulfur source, did not cause any difference in the bacterial growth. Resting cells grown in the presence of Zn2+ exhibited a 2-HBP specific productivity of 2.29 μmol g−1 (DCW) h−1, 7.6-fold higher than the specific productivity obtained by resting cells grown in the absence of Zn2+ (0.30 μmol g−1 (DCW) h−1). These data suggests that zinc might have a key physiological role in the metabolism of DBT desulfurization.

Keywords

Dibenzothiophene Biodesulfurization Gordonia alkanivorans Zinc Enzyme cofactors 

Notes

Acknowledgments

This work has been supported by the contract POCTI/AMB/59108/04.

References

  1. 1.
    Alves L, Melo M, Mendonça D, Simões F, Matos J, Tenreiro R, Gírio FM (2007) Sequencing, cloning and expression of the dsz genes required for dibenzothiophene sulfone desulfurization from Gordonia alkanivorans strain 1B. Enzyme Microb Technol 40:1598–1603CrossRefGoogle Scholar
  2. 2.
    Alves L, Salgueiro R, Rodrigues C, Mesquita E, Matos J, Gírio FM (2005) Desulfurization of dibenzothiophene, benzothiophene and other thiophene analogues by a newly isolated bacterium, Gordonia alkanivorans strain 1B. Appl Biochem Biotechnol 120:199–208CrossRefGoogle Scholar
  3. 3.
    Beard SJ, Hughes MN, Poole RK (1995) Inhibition of the cytochrome BD-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal-cations. FEMS Microbiol Lett 131:205–210CrossRefGoogle Scholar
  4. 4.
    Gray KA, Mrachko GT, Squires CH (2003) Biodesulfurization of fossil fuels. Curr Opin Microbiol 6:229–235CrossRefGoogle Scholar
  5. 5.
    Gunam IBW, Yaku Y, Hirano M, Yamamura K, Tomita F, Sone T, Asano K (2006) Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b. J Biosci Bioeng 101:322–327CrossRefGoogle Scholar
  6. 6.
    Kilbane JJ II (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Microbiol 17:305–314Google Scholar
  7. 7.
    Konishi J, Onaka T, Ishii Y, Susuki M (2000) Demonstration of the carbon–sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene. FEMS Microbiol Lett 187:151–154CrossRefGoogle Scholar
  8. 8.
    Li F, Zhang Z, Feng J, Cai X, Xu P (2007) Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. J Biotechnol 127:222–228CrossRefGoogle Scholar
  9. 9.
    Li W, Wang MD, Chen H, Chen JM, Shi Y (2006) Biodesulfurization of dibenzothiophene by growing cells of Gordonia sp. in batch cultures. Biotechnol Lett 28:1175–1179CrossRefGoogle Scholar
  10. 10.
    Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–182CrossRefGoogle Scholar
  11. 11.
    Lu J, Nakajima-Kambe T, Shigeno T, Ohbo A, Nomura N, Nakahara T (1999) Biodegradation of dibenzothiophene and 4,6-dimethyldibenzothiophene by Sphingomonas paucimobilis strain TZS-7. J Biosci Bioeng 88:293–299CrossRefGoogle Scholar
  12. 12.
    Ma C-Q, Feng J-H, Zeng Y-Y, Cai X-F, Sun B-P, Zhang Z-B, Blankespoor H-D, Xu P (2006) Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp. Chemosphere 65:165–169CrossRefGoogle Scholar
  13. 13.
    Matsubara T, Ohshiro T, Nishina Y, Izumi Y (2001) Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl Environ Microbiol 67:1179–1184CrossRefGoogle Scholar
  14. 14.
    Mohebali G, Ball AS, Rasekh B, Kaytash A (2007) Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A. Enzyme Microb Technol 40:578–584CrossRefGoogle Scholar
  15. 15.
    McCall KA, Huang CC, Fierke CA (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130:1437S–1446SGoogle Scholar
  16. 16.
    Nakayama N, Matsubara T, Ohshiro T, Moroto Y, Kawata Y, Koizumi K, Hirakawa Y, Suzuki M, Maruhashi K, Izumi Y, Kurane R (2002) A novel enzyme, 2′-hydroxybiphenyl-2-sulfinate desulfinase (DszB), from a dibenzothiophene-desulfurizing bacterium Rhodococcus erythropolis KA2-5-1: gene overexpression and enzyme characterization. Biochim Biophys Acta 1598:122–130Google Scholar
  17. 17.
    Ohshiro T, Kojima T, Torii K, Kawasoe H, Izumi Y (1999) Purification and characterization of dibenzothiophene (DBT) sulfone monooxygenase, an enzyme involved in DBT desulfurization, from Rhodococcus erythropolis D-1. J Biosci Bioeng 88:610–616CrossRefGoogle Scholar
  18. 18.
    Ohshiro T, Suzuki K, Izumi Y (1997) Dibenzothiophene (DBT) degrading enzyme responsible for the first step of DBT desulfurization by Rhodococcus erythropolis D-1: purification and characterization. J Ferment Bioeng 83:233–237CrossRefGoogle Scholar
  19. 19.
    Santos SCC, Alviano DS, Alviano CS, Padula M, Leitao AC, Martins OB, Ribeiro CMS, Sassaki MYM, Matta CPS, Bevilaqua J, Sebastian GV, Seldin L (2006) Characterization of Gordonia sp. strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization. Appl Microbiol Biotechnol 71:355–362CrossRefGoogle Scholar
  20. 20.
    Schilling O, Vogel A, Kostelecky B, da Luz HN, Spemann D, Spath B, Marchfelder A, Troger W, Meyer-Klaucke W (2005) Zinc- and iron-dependent cytosolic metallo-beta-lactamase domain proteins exhibit similar zinc-binding affinities, independent of an atypical glutamate at the metal-binding site. Biochem J 385:145–153CrossRefGoogle Scholar
  21. 21.
    Vallee BL, Auld DS (1993) New perspectives on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. Biochemistry 32:6493–6500CrossRefGoogle Scholar
  22. 22.
    Watkins LM, Rodriguez R, Schneider D, Broderick R, Cruz M, Chambers R, Ruckman E, Cody M, Mrachko GT (2003) Purification and characterization of the aromatic desulfinase, 2-(2′-hydroxyphenyl)benzenesulfinate desulfinase. Arch Biochem Biophys 415:14–23CrossRefGoogle Scholar
  23. 23.
    Yoshizawa K, Yumura T (2003) A non-radical mechanism for methane hydroxylation at the diiron active site of soluble methane monooxygenase. Chemistry 9:2347–2358CrossRefGoogle Scholar
  24. 24.
    Yu SSF, Chen KHC, Tseng MYH, Wang YS, Tseng CF, Chen YJ, Huang DS, Chan SI (2003) Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J Bacteriol 185:5915–5924CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2007

Authors and Affiliations

  • Luís Alves
    • 1
  • José Matos
    • 1
  • Rogério Tenreiro
    • 2
  • Francisco M. Gírio
    • 1
  1. 1.INETI, Departamento de BiotecnologiaLisbonPortugal
  2. 2.FCUL, Departamento de Biologia VegetalCentro de genética e Biologia MolecularLisbonPortugal

Personalised recommendations