Characterization and role of a metalloprotease induced by chitin in Serratia sp. KCK

  • Hyun-Soo Kim
  • Peter N. Golyshin
  • Kenneth N. Timmis
Original Paper


A metalloprotease induced by chitin in a new chitinolytic bacterium Serratia sp. Strain KCK was purified and characterized. Compared with other Serratia enzymes, it exhibited a rather broad pH activity range (pH 5.0–8.0), and thermostability. The cognate ORF, mpr, was cloned and expressed. Its deduced amino acid sequence showed high similarity to those of bacterial zinc-binding metalloproteases and a well-conserved serralysin family motif. Pretreatment of chitin with the Mpr protein promoted chitin degradation by chitinase A, which suggests that Mpr participates in, and facilitates, chitin degradation by this microorganism.


Metalloprotease Chitin Serratia Chitinase A 



We gratefully acknowledge MetaGenoMik Project of Federal Ministery for Science and Education (BMBF) and Fonds der Chemischen Industrie for generous support.


  1. 1.
    Baumann U (1994) Crystal structure of the 50 kDa metalloprotease from Serratia marcescens. J Mol Biol 242:244–251CrossRefGoogle Scholar
  2. 2.
    Bode W, Gomis-Rüth F-X, Stöcker W (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett 331:134–140CrossRefGoogle Scholar
  3. 3.
    Braun V, Schmitz G (1980) Excretion of a protease by Serratia marcescens. Arch Microbiol 124:55–61CrossRefGoogle Scholar
  4. 4.
    Cascón A, Yugueros J, Temprano A, Sánchez M, Hernanz C, Luengo JM, Naharro G (2000) A major secreted elastase is essential for pathogenicity of Aeromonas hydrophila. Infect Immun 68:3233–3241CrossRefGoogle Scholar
  5. 5.
    Chuang YC, Chang TM, Chang MC (1997) Cloning and characterization of the gene (empV) encoding extracellular metalloprotease from Vibrio vulnificus. Gene 189:163–168CrossRefGoogle Scholar
  6. 6.
    Decedue CJ, Broussard EA, Larson AD, Braymer HD (1979) Purification and characterization of the extracellular proteinase of Serratia marcescens. Biochim Biophys Acta 569:293–301Google Scholar
  7. 7.
    Folders J, Tommassen J, van Loon LC, Bitter W (2000) Identification of a chitin-binding protein secreted by Pseudomonas aeruginosa. J Bacteriol 182:1257–1263CrossRefGoogle Scholar
  8. 8.
    Golyshina OV, Golyshin PN, Timmis KN, Ferrer M (2005) The ‘pH optimum anomaly’ of intracellular enzymes of Ferroplasma acidiphilum. Environ Microbiol 8:416–425CrossRefGoogle Scholar
  9. 9.
    Gooday GW (1990) Physiology of microbial degradation of chitin and chitosan. Biodegradation 1:177–190CrossRefGoogle Scholar
  10. 10.
    Häse CC, Finkelstein RA (1993) Bacterial extracellular zinc-containing metalloproteases. Microbiol Rev 57:823–837Google Scholar
  11. 11.
    Ichinose Y, Ehara M, Honda T, Miwatani T (1994) The effect on enterotoxicity of protease purified from Vibrio cholerae O1. FEMS Microbiol Lett 115:265–271CrossRefGoogle Scholar
  12. 12.
    Imanaka T, Fukui T, Fujiwara S (2001) Chitinase from Thermococcus kodakaraensis KOD1. Meth Enzymol 330:319–329CrossRefGoogle Scholar
  13. 13.
    Imoto T, Yagishita K (1971) A simple activity measurement of lysozyme. Agric Biol Chem 35:1154–1156Google Scholar
  14. 14.
    Keyhani NO, Roseman S (1999) Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta 1473:108–122Google Scholar
  15. 15.
    Kim HS, Timmis KN, Golyshin PN (2007) Characterization of a chitinolytic enzyme from Serratia sp. KCK isolated from kimchi juice. Appl Microbiol Biotechnol 75: 1275–1283CrossRefGoogle Scholar
  16. 16.
    Lacks SA, Springhorn SS (1980) Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. J Biol Chem 255:7467–7473Google Scholar
  17. 17.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  18. 18.
    Létoffé S, Ghigo J-M, Wandersman C (1993) Identification of two components of the Serratia marcescens metalloprotease transporter: protease SM secretion in Escherchia coli is TolC dependent. J Bacteriol 175:7321–7328Google Scholar
  19. 19.
    Matsumoto K, Maeda H, Takata K, Kamata R, Okamura R (1984) Purification and characterization of four proteases from a clinical isolate of Serratia marcescens kums 3958. J Bacteriol 157:225–232Google Scholar
  20. 20.
    Miyamoto K, Nukui E, Hirose M, Nagai F, Sato T, Inamori Y, Tsujibo H (2002) A metalloprotease (MprIII) involved in the chitinolytic system of a marine bacterium, Alteromonas sp. strain O-7. Appl Environ Microbiol 68:5563–5570CrossRefGoogle Scholar
  21. 21.
    Miyamoto K, Nukui E, Itoh H, Sato T, Kobayashi T, Imada C, Watanabe E, Inamori Y, Tsujibo H (2002) Molecular analysis of the gene encoding a novel chitin-binding protease from Alteromonas sp. strain O-7 and its role in the chitinolytic system. J Bacteriol 184:1865–1872CrossRefGoogle Scholar
  22. 22.
    Miyoshi S, Shinoda S (2000) Microbial metalloproteases and pathogenesis. Microb Infect 2:91–98CrossRefGoogle Scholar
  23. 23.
    Montgomery MT, Kirchman DL (1993) Role of chitin-binding proteins in the specific attachment of the marine bacterium Vibrio harveyi to chitin. Appl Environ Microbiol 59:373–379Google Scholar
  24. 24.
    Nakahama K, Yoshimura K, Marumoto R, Kikuchi M, Lee IS, Hase T, Matsubara H (1986) Cloning and sequencing of Serratia protease. Gene 14:5843–5854Google Scholar
  25. 25.
    Ried JL, Collmer A (1985) Activity stain for rapid characterization of pectic enzymes in isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gels. Appl Environ Microbiol 50:615–622Google Scholar
  26. 26.
    Salamone PR, Wodzinski RJ (1997) Production, purification and characterization of a 50-kDa extracellular metalloprotease from Serratia marcescens. Appl Microbiol Biotechnol 48:317–324CrossRefGoogle Scholar
  27. 27.
    Stöcker W, Grams F, Baumann U, Reinemer P, Gomis-Rüth F-X, McKay DB, Bode W (1995) The metzincins-Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamiy of zinc-peptidases. Protein Sci 4:823–840CrossRefGoogle Scholar
  28. 28.
    Suzuki K, Suzuki M, Taiyoji M, Nikaidou N, Watanabe T (1998) Chitin binding protein (CBP21) in the culture supernatant of Serratia marcescens 2170. Biosci Biotechnol Biochem 62:128–135CrossRefGoogle Scholar
  29. 29.
    Vaaje-Kolstad G., Horn SJ, van Aalten DMF, Synstad B, Eijsin VG.H (2005) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280:28492–28497CrossRefGoogle Scholar
  30. 30.
    Wretlind B, Pavlovskis OR (1983) Pseudomonas aeruginosa elastase and its pseudomonas infections. Rev Infect Dis 5:S998–S1004Google Scholar
  31. 31.
    Yu C, Lee AM, Bassler BL, Roseman S (1991) Chitin utilization by marine bacteria. J Biol Chem 266:24260–24267Google Scholar

Copyright information

© Society for Industrial Microbiology 2007

Authors and Affiliations

  • Hyun-Soo Kim
    • 1
  • Peter N. Golyshin
    • 1
    • 2
  • Kenneth N. Timmis
    • 1
    • 2
  1. 1.Department of Environmental MicrobiologyThe Helmholtz Center for Infection ResearchBraunschweigGermany
  2. 2.Institute for MicrobiologyTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations