Identification of metabolites produced from N-phenylpiperazine by Mycobacterium spp

  • M. D. Adjei
  • J. Deck
  • T. M. Heinze
  • J. P. Freeman
  • A. J. Williams
  • J. B. Sutherland
Original Paper

Abstract

Mycobacterium sp. 7E1B1W and seven other mycobacterial strains known to degrade hydrocarbons were investigated to determine their ability to metabolize the piperazine ring, a substructure found in many drugs. Cultures were grown at 30°C in tryptic soy broth and dosed with 3.1 mM N-phenylpiperazine hydrochloride; samples were removed at intervals and extracted with ethyl acetate. Two metabolites were purified from each of the extracts by high-performance liquid chromatography; they were identified by mass spectrometry and 1H nuclear magnetic resonance spectroscopy as N-(2-anilinoethyl)acetamide and N-acetyl-N′-phenylpiperazine. The results show that mycobacteria have the ability to acetylate piperazine rings and cleave carbon-nitrogen bonds.

Keywords

Biotransformation Fluoroquinolones Mycobacterium N-phenylpiperazine Piperazine 

References

  1. 1.
    Adjei MD, Heinze TM, Deck J, Freeman JP, Williams AJ, Sutherland JB (2006) Transformation of the antibacterial agent norfloxacin by environmental mycobacteria. Appl Environ Microbiol 72:5790–5793CrossRefGoogle Scholar
  2. 2.
    Adjei MD, Heinze TM, Deck J, Freeman JP, Williams AJ, Sutherland JB (2007) Acetylation and nitrosation of ciprofloxacin by environmental strains of mycobacteria. Can J Microbiol (in press)Google Scholar
  3. 3.
    Beam HW, Perry JJ (1974) Microbial degradation of cycloparaffinic hydrocarbons via co-metabolism and commensalism. J Gen Microbiol 82:163–169Google Scholar
  4. 4.
    Blevins WT, Perry JJ (1972) Metabolism of propane, n-propylamine, and propionate by hydrocarbon-utilizing bacteria. J Bacteriol 112:513–518Google Scholar
  5. 5.
    Brezna B, Khan AA, Cerniglia CE (2003) Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiol Lett 223:177–183CrossRefGoogle Scholar
  6. 6.
    Brooke EW, Davies SG, Mulvaney AW, Pompeo F, Sim E, Vickers RJ (2003) An approach to identifying novel substrates of bacterial arylamine N-acetyltransferases. Bioorgan Med Chem 11:1227–1234CrossRefGoogle Scholar
  7. 7.
    Bryskier A, Lowther J (2002) Fluoroquinolones and tuberculosis. Expert Opin Invest Drugs 11:233–258CrossRefGoogle Scholar
  8. 8.
    Chen Y, Rosazza JPN, Reese CP, Chang H-Y, Nowakowski MA, Kiplinger JP (1997) Microbial models of soil metabolism: biotransformations of danofloxacin. J Ind Microbiol Biotechnol 19:378–384CrossRefGoogle Scholar
  9. 9.
    Cohen MR, Hinsch E, Palkoski Z, Vergona R, Urbano S, Sztokalo J (1982) The cardiovascular and autonomic properties of N-phenylpiperazine (NPP) in several animal models. J Pharmacol Exp Ther 223:110–119Google Scholar
  10. 10.
    Combourieu B, Poupin P, Besse P, Sancelme M, Veschambre H, Truffaut N, Delort A-M (1998) Thiomorpholine and morpholine oxidation by a cytochrome P450 in Mycobacterium aurum MO1. Evidence of the intermediates by in situ 1H NMR. Biodegradation 9:433–442CrossRefGoogle Scholar
  11. 11.
    Dalhoff A, Bergan T (1998) Pharmacokinetics of fluoroquinolones in experimental animals. In: Kuhlmann J, Dalhoff A, Zeiler H-J (eds) Quinolone antibacterials. Springer-Verlag, Berlin, Germany, pp 179–206Google Scholar
  12. 12.
    Delort A-M, Combourieu B (2001) In situ 1H NMR study of the biodegradation of xenobiotics: Application to heterocyclic compounds. J Ind Microbiol Biotechnol 26:2–8CrossRefGoogle Scholar
  13. 13.
    Dmitrenko GN, Gvozdyak PI, Udod VM (1987) Selection of destructor microorganisms for heterocyclic xenobiotics. Khim Tekhnol Vody (Engl Transl) 9:442–445Google Scholar
  14. 14.
    Domagala JM, Hagen SE (2003) Structure-activity relationships of the quinolone antibacterials in the new millennium: some things change and some do not. In: Hooper DC, Rubinstein E (eds) Quinolone antimicrobial agents, 3rd edn. ASM Press, Washington, DC, USA, pp 3–18Google Scholar
  15. 15.
    Emtiazi G, Knapp JS (1994) The biodegradation of piperazine and structurally-related linear and cyclic amines. Biodegradation 5:83–92CrossRefGoogle Scholar
  16. 16.
    Grover JK, Vats V, Uppal G, Yadav S (2001) Anthelmintics: a review. Trop Gastroenterol 22:180–189Google Scholar
  17. 17.
    Kim Y-H, Engesser K-H, Cerniglia CE (2005) Numerical and genetic analysis of polycyclic aromatic hydrocarbon-degrading mycobacteria. Microb Ecol 50:110–119CrossRefGoogle Scholar
  18. 18.
    Levy AD, Van de Kar LD (1992) Endocrine and receptor pharmacology of serotonergic anxiolytics, antipsychotics and antidepressants. Life Sci 51:83–94CrossRefGoogle Scholar
  19. 19.
    Mjos K (1978) Cyclic amines. In: Grayson M, Eckroth D (eds) Kirk-Othmer Encyclopedia of Chemical Technology, 3rd edn. vol 2. Wiley, New York, NY, USA, pp 295–308Google Scholar
  20. 20.
    Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (2000) Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl Environ Microbiol 66:2664–2667CrossRefGoogle Scholar
  21. 21.
    Parshikov IA, Freeman JP, Lay JO, Moody JD, Williams AJ, Beger RD, Sutherland JB (2001) Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J Ind Microbiol Biotechnol 26:140–144CrossRefGoogle Scholar
  22. 22.
    Parshikov IA, Heinze TM, Moody JD, Freeman JP, Williams AJ, Sutherland JB (2001) The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Appl Microbiol Biotechnol 56:474–477CrossRefGoogle Scholar
  23. 23.
    Pauliukonis LT, Musson DG, Bayne WF (1984) Quantitation of norfloxacin, a new antibacterial agent in human plasma and urine by ion-pair reverse-phase chromatography. J Pharm Sci 73:99–102CrossRefGoogle Scholar
  24. 24.
    Payton M, Auty R, Delgoda R, Everett M, Sim E (1999) Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance. J Bacteriol 181:1343–1347Google Scholar
  25. 25.
    Payton M, Mushtaq A, Yu T-W, Wu L-J, Sinclair J, Sim E (2001) Eubacterial arylamine N-acetyltransferases–identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartate residues. Microbiology 147:1137–1147Google Scholar
  26. 26.
    Pietsch J, Hampel S, Schmidt W, Brauch H-J, Worch E (1996) Determination of aliphatic and alicyclic amines in water by gas and liquid chromatography after derivatization by chloroformates. Fresenius J Anal Chem 355:164–173Google Scholar
  27. 27.
    Poupin P, Truffaut N, Combourieu B, Besse P, Sancelme M, Veschambre H, Delort AM (1998) Degradation of morpholine by an environmental Mycobacterium strain involves a cytochrome P-450. Appl Environ Microbiol 64:159–165Google Scholar
  28. 28.
    Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz [a]anthracene, and benzo [a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62:13–19Google Scholar
  29. 29.
    Sheng C-Q, Zhang W-N, Ji H-T, Song Y-L, Yang S, Zhou Y-J, Zhu J, Lü J-G (2003) Synthesis and antifungal activity of 1-(1,2,4-triazolyl-1H-1-yl)-2-(2,4-difluorophenyl)-3-(4-substituted benzyl-1-piperazinyl)-2-propanols. Acta Pharm Sin 38:665–670 [in Chinese]Google Scholar
  30. 30.
    Tanzi MC, Levi M, Danusso F (1990) Amides from N-phenylpiperazine as low-toxicity activators in radical polymerizations. Polymer 31:1735–1738CrossRefGoogle Scholar
  31. 31.
    Wetzstein H-G, Schmeer N, Karl W (1997) Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites. Appl Environ Microbiol 63:4272–4281Google Scholar
  32. 32.
    Wetzstein H-G, Stadler M, Tichy H-V, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl Environ Microbiol 65:1556–1563Google Scholar
  33. 33.
    Zeiler H-J, Petersen U, Gau W, Ploschke HJ (1987) Antibacterial activity of the metabolites of ciprofloxacin and its significance in the bioassay. Arzneim-Forsch/Drug Res 37:131–134Google Scholar

Copyright information

© Society for Industrial Microbiology 2006

Authors and Affiliations

  • M. D. Adjei
    • 1
    • 3
  • J. Deck
    • 1
  • T. M. Heinze
    • 2
  • J. P. Freeman
    • 2
  • A. J. Williams
    • 1
  • J. B. Sutherland
    • 1
  1. 1.Division of MicrobiologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonUSA
  2. 2.Division of Biochemical ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonUSA
  3. 3.Norfolk Department of Public HealthNorfolkUSA

Personalised recommendations