Drug discovery from natural products

  • Vincent P. Gullo
  • James McAlpine
  • Kin S. Lam
  • Dwight Baker
  • Frank Petersen
Review Paper


Natural product compounds are the source of numerous therapeutic agents. Recent progress to discover drugs from natural product sources has resulted in compounds that are being developed to treat cancer, resistant bacteria and viruses and immunosuppressive disorders. Many of these compounds were discovered by applying recent advances in understanding the genetics of secondary metabolism in actinomycetes, exploring the marine environment and applying new screening technologies. In many instances, the discovery of a novel natural product serves as a tool to better understand targets and pathways in the disease process. This review describes recent progress in drug discovery from natural sources including several examples of compounds that inhibit novel drug targets.


Drug discovery Natural products Drug targets Screening Secondary metabolism 


  1. 1.
    Belenky A, Hughes D, Korneev A, Dunayevskiy Y (2004) Capillary electrophoretic approach to screen for enzyme inhibitors in natural extracts. J Chromatogr A 1053(1–2):247–251Google Scholar
  2. 2.
    Besemer J, Harant H, Wang S, Oberhauser B, Marquardt K, Foster CA, Schreiner EP, de Vries JE, Dascher-Nadel C, Lindley IJ (2005) Selective inhibition of cotranslational translocation of vascular cell adhesion molecule 1. Nature 436(7048):290–293CrossRefGoogle Scholar
  3. 3.
    Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153CrossRefGoogle Scholar
  4. 4.
    Butler MS (2005) Natural products to drugs: natural product compounds in clinical trials. Nat Prod Rep 22:162–195CrossRefGoogle Scholar
  5. 5.
    Charan RD, Schlinghann G, Janso J, Bernan V, Feng X, Carter GT (2004) Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. J Nat Prod 67(8):1431–1433CrossRefGoogle Scholar
  6. 6.
    Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N, Yasui H, letai A, Ovaa H, Berkers C, Nicholson B, Chao T-H, Neuteboom STC, Richardson P, Palladino M, Anderson KC (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8:407–419CrossRefGoogle Scholar
  7. 7.
    Cheng Z, Jiang Y, Mandon EC, Gilmore R (2005) Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. J Cell Biol 168(1):67–77CrossRefGoogle Scholar
  8. 8.
    Chiba K (2005) FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol Ther 108(3):308–319CrossRefGoogle Scholar
  9. 9.
    Feling RH, Buchanan GO, MincerTJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed Engl 42(3):355–357CrossRefGoogle Scholar
  10. 10.
    Garrison JL, Kunkel EJ, Hegde RS, Taunton J (2005) A substrate-specific inhibitor of protein translocation into the endoplasmic reticulum. Nature 436(7048):285–289CrossRefGoogle Scholar
  11. 11.
    Gravestock MB (2005) Recent developments in the discovery of novel oxazolidinone antibacterials. Curr Opin Drug Discov Devel 8(4):469–477Google Scholar
  12. 12.
    Jain R, Chen D, White RJ, Patel DV, Yuan Z (2005) Bacterial Peptide deformylase inhibitors: a new class of antibacterial agents. Curr Med Chem 12(14):1607–1601CrossRefGoogle Scholar
  13. 13.
    Kahan BD (2004) FTY720: from bench to bedside. Transplant Proc 36(2 Suppl):531S–543SCrossRefGoogle Scholar
  14. 14.
    Koehn FE, Carter GT (2005) The evolving role of natural products drug discovery. Nat Rev 4:206–220Google Scholar
  15. 15.
    Kristeleit R, Stimson L, Workman P, Aherne W (2004) Histone modification enzymes: novel targets for cancer drugs. Expert Opin Emerg Drugs 9(1):135–154CrossRefGoogle Scholar
  16. 16.
    Kung AL, Zabludoff SD, France DS, Freedman SJ, Tanner EA, Vieira A, Cornell-Kennon S, Lee J, Wang B, Wang J, Memmert K, Naegeli HU, Petersen F, Eck MJ, Bair KW, Wood AW, Livingston DM (2004) Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell 6(1):33–43CrossRefGoogle Scholar
  17. 17.
    Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F, Bruseo C, Wood AW, Shivdasani RA (2004) Small-molecule antagonists of the oncogenic Tcf/beta–catenin protein complex. Cancer Cell 5(1):91–102CrossRefGoogle Scholar
  18. 18.
    Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10(12 Suppl):S122–S129CrossRefGoogle Scholar
  19. 19.
    Livermore DM (2004) The need for new antibiotics. Clin Microbiol Infect 10(Suppl 4):1–9CrossRefGoogle Scholar
  20. 20.
    Macherla VR, Mitchell SS, Manam RR, Reed KA, Chao TH, Nicholson B, Deyanat-Yazdi G, Mai B, Jensen PR, Fenical WF, Neuteboom ST, Lam KS, Palladino MA, Potts BC (2005) Structure–activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J Med Chem 48(11):3684–3687CrossRefGoogle Scholar
  21. 21.
    Mullady EL et al (2004) A phthalide with in vitro growth inhibitory activity from an oidiodendron strain. J Nat Prod 67(12):2086–2099CrossRefGoogle Scholar
  22. 22.
    Neckers L, Neckers K (2002) Heat-shock protein 90 inhibitors as novel cancer chemotherapeutic agents. Expert Opin Emerg Drugs 7(2):277–288CrossRefGoogle Scholar
  23. 23.
    Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17:215–234CrossRefGoogle Scholar
  24. 24.
    Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037CrossRefGoogle Scholar
  25. 25.
    Nicholson B, Lloyd GK, Miller BR, Palladino MA, Kiso Y, Hayashi Y, Neuteboom STC (2006) NPI-2358 is a tubulin-depolymerization agent: in vitro evidence for activity as a tumor vascular-disrupting agent. Anticancer Drugs 17(1):25–31CrossRefGoogle Scholar
  26. 26.
    Ostrander JM, Hurley LH, McInnes AG, Smith DG, Walter JA, Wright JL (1980) Proof for the biosynthetic conversion of l-[indole-15 N]tryptophan to [10–15 N]anthramycin using (13C, 15 N) labelling in conjunction with 13C-NMR and mass spectral analysis. J Antibiot (Tokyo) 33(10):1167–1171Google Scholar
  27. 27.
    Overbye KM, Barrett JF (2005) Antibiotics: where did we go wrong? Drug Discov Today 10(1):45–52CrossRefGoogle Scholar
  28. 28.
    Pierceall WE et al (2004) Affinity capillary electrophoresis analyses of protein–protein interactions in target-directed drug discovery. Methods Mol Biol 261:187–198Google Scholar
  29. 29.
    Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2006

Authors and Affiliations

  • Vincent P. Gullo
    • 1
  • James McAlpine
    • 2
  • Kin S. Lam
    • 3
  • Dwight Baker
    • 4
  • Frank Petersen
    • 5
  1. 1.Cetek CorporationMarlboroughUSA
  2. 2.Ecopia BiosciencesSaint-LaurentCanada
  3. 3.Nereus Pharmaceuticals, Inc.San DiegoUSA
  4. 4.Cubist Pharmaceuticals, Inc.LexingtonUSA
  5. 5.Novartis Institutes for Biomedical ResearchBaselSwitzerland

Personalised recommendations