Antibiotic production by actinomycetes: the Janus faces of regulation



This manuscript reviews some of the common regulatory mechanisms that control antibiotic production in actinomycetes. These ubiquitous bacteria, collectively responsible for the earthy smell of soil, are prolific producers of antibiotics and other secondary metabolites. The content of this review is biased towards the author’s current research interests, concerning the action of regulatory gene products that control transcription of antibiotic-biosynthetic genes and the associated involvement of low molecular weight signalling molecules of the gamma-butyrolactone family. As a result, much fertile ground remains unturned particularly in the area of environmental monitoring and responses of actinomycetes to stimuli so perceived. Reviews casting a broader net are cited in the text.


Actinomycetes Antibiotic production SARPs Gamma-butyrolactones Pathway-specific regulation Pleiotropic regulation 


  1. 1.
    Arias P, Fernández-Moreno MA, Malpartida F (1999) Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968Google Scholar
  2. 2.
    Arisawa A, Kawamura N, Tsunekawa H, Okamura K, Tone H, Okamoto R (1993) Cloning and nucleotide sequences of two genes involved in the 4”-O-acylation of macrolide antibiotics from Streptomyces thermotolerans. Biosci Biotech Biochem 57:2020–2025CrossRefGoogle Scholar
  3. 3.
    Bate N, Butler AR, Gandecha AR, Cundliffe E (1999) Multiple regulatory genes in the tylosin-biosynthetic cluster of Streptomyces fradiae. Chem Biol 6:617–624CrossRefGoogle Scholar
  4. 4.
    Bate N, Stratigopoulos G, Cundliffe E (2002) Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis. Molec Microbiol 43:449–458CrossRefGoogle Scholar
  5. 5.
    Bibb M (1996) The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiol 142:1335–1344CrossRefGoogle Scholar
  6. 6.
    Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Op Microbiol 8:208–215CrossRefGoogle Scholar
  7. 7.
    Butler AR, Gandecha AR, Cundliffe E (2001) Influence of ancillary genes, encoding aspects of methionine metabolism, on tylosin biosynthesis in Streptomyces fradiae. J Antibiot 54:642–649Google Scholar
  8. 8.
    Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100:14555–14561CrossRefGoogle Scholar
  9. 9.
    Cundliffe E (1989) How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 43:207–233CrossRefGoogle Scholar
  10. 10.
    Dobbs BJT (1991) The Janus Faces of Genius: the role of alchemy in Newton’s thought. Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Fernández-Moreno MA, Caballero JL, Hopwood DA, Malpartida F (1991) The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 66:769–780CrossRefGoogle Scholar
  12. 12.
    Folcher M, Gaillard H, Nguyen LT, Nguyen KT, Lacroix P, Bamas-Jacques N, Rinkel M, Thompson CJ (2001) Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276:44297–44306CrossRefGoogle Scholar
  13. 13.
    Kawachi R, Wangchaisoonthorn U, Nihira T, Yamada Y (2000) Identification by gene deletion analysis of a regulator, VmsR, that controls virginiamycin biosynthesis in Streptomyces virginiae. J Bacteriol 182:6259–6263CrossRefGoogle Scholar
  14. 14.
    Kinoshita H, Ipposhi H, Okamoto S, Nakano H, Nihira T, Yamada Y (1997) Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae. J Bacteriol 179:6986–6993Google Scholar
  15. 15.
    Kinoshita H, Tsuji T, Ipposhi H, Nihira T, Yamada Y (1999) Characterization of binding sequences for butyrolactone autoregulator receptors in streptomycetes. J Bacteriol 181:5075–5080Google Scholar
  16. 16.
    Kitani S, Kinoshita H, Nihira T, Yamada Y (1999) In vitro analysis of the butyrolactone autoregulator receptor protein (FarA) of Streptomyces lavendulae FRI-5 reveals that FarA acts as a DNA-binding transcriptional regulator that controls its own synthesis. J Bacteriol 181:5081–5084Google Scholar
  17. 17.
    Madduri K, Hutchinson CR (1995) Functional characterization and transcriptional analysis of the dnrR 1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol 177:1208–1215Google Scholar
  18. 18.
    Martin JF, Demain AL (1980) Control of antibiotic biosynthesis. Microbiol Rev 44:230–251Google Scholar
  19. 19.
    Matsuno K, Yamada Y, Lee C-K, Nihira T (2004) Identification by gene deletion analysis of barB as a negative regulator controlling an early process of virginiamycin biosynthesis in Streptomyces virginiae. Arch Microbiol 181:52–59CrossRefGoogle Scholar
  20. 20.
    Nakano H, Takehara E, Nihira T, Yamada Y (1998) Gene replacement analysis of the Streptomyces virginiae barA gene encoding the butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis. J Bacteriol 180:3317–3322Google Scholar
  21. 21.
    Ohnishi Y, Kameyama S, Onaka H, Horinouchi S (1999) The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Molec Microbiol 34:102–111CrossRefGoogle Scholar
  22. 22.
    Retzlaff L, Distler J (1995) The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites. Molec Microbiol 18:151–162CrossRefGoogle Scholar
  23. 23.
    Santamarta I, Rodríguez-García A, Pérez-Redondo R, Martín JF, Liras P (2002) CcaR is an autoregulatory protein that binds to the ccaR and cefD-cmcI promoters of the cephamycin C-clavulanic acid cluster in Streptomyces clavuligerus. J Bacteriol 184: 3106–3113CrossRefGoogle Scholar
  24. 24.
    Stratigopoulos G, Bate N, Cundliffe E (2004) Positive control of tylosin biosynthesis: pivotal role of TylR. Molec Microbiol 54:1326–1334CrossRefGoogle Scholar
  25. 25.
    Stratigopoulos G, Cundliffe E (2002a) Expression analysis of the tylosin-biosynthetic gene cluster: pivotal regulatory role of the tylQ product. Chem Biol 9:71–78CrossRefGoogle Scholar
  26. 26.
    Stratigopoulos G, Cundliffe E (2002b) Inactivation of a transcriptional repressor during empirical improvement of the tylosin producer. J Ind Microbiol Biotechnol 28:219–224CrossRefGoogle Scholar
  27. 27.
    Stratigopoulos G, Gandecha AR, Cundliffe E (2002) Regulation of tylosin production and morphological differentiation in Streptomyces fradiae by TylP, a deduced γ-butyrolactone receptor. Molec Microbiol 45:735–744CrossRefGoogle Scholar
  28. 28.
    Tahlan K, Anders C, Jensen SE (2004) The paralogous pairs of genes involved in clavulanic acid and clavam metabolite biosynthesis are differently regulated in Streptomyces clavuligerus. J Bacteriol 186: 6286–6297CrossRefGoogle Scholar
  29. 29.
    Takano E, Chakraburtty R, Nihira T, Yamada Y, Bibb MJ (2001) Complex role for the γ-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Molec Microbiol 41:1015–1028CrossRefGoogle Scholar
  30. 30.
    Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G, Nihira T, Smith CP, Bibb M, Wohlleben W, Chater K (2005) A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type 1 polyketide biosynthetic gene cluster of Streptomyces coelicolor. Molec Microbiol 56:465–479CrossRefGoogle Scholar
  31. 31.
    Tang L, Grimm A, Zhang Y-X, Hutchinson CR (1996) Purification and characterization of the DNA-binding protein DnrI, a transcriptional factor of daunorubicin biosynthesis in Streptomyces peucetius. Molec Microbiol 22:801–813CrossRefGoogle Scholar
  32. 32.
    Tomono A, Tsai Y, Yamazaki H, Ohnishi Y, Horinouchi S (2005) Transcriptional control by A-factor of strR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus. J Bacteriol 187:5595–5604CrossRefGoogle Scholar
  33. 33.
    Wietzorrek A, Bibb M (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Molec Microbiol 25:1177–1184Google Scholar
  34. 34.
    Yamada Y (1999) Autoregulatory factors and regulation of antibiotic production in Streptomyces. In: England RR, Hobbs G, Bainton NJ, Roberts DMcL (eds) Microbial signalling and communication. Cambridge University Press, Cambridge, pp 177–196Google Scholar
  35. 35.
    Yamazaki H, Tomono A, Ohnishi Y, Horinouchi S (2004) DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Molec Microbiol 53:555–572CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2006

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of LeicesterLeicesterUK

Personalised recommendations