Analysis of myxobacterial secondary metabolism goes molecular

Review

Abstract

During the last 20 years myxobacteria have made their way from highly exotic organisms to one of the major sources of microbial secondary metabolites besides actinomycetes and fungi. The pharmaceutical interest in these peculiar prokaryotes lies in their ability to produce a variety of structurally unique compounds and/or metabolites with rare biological activities. This review deals with the recent progress toward a better understanding of the biology, the genetics, the biochemistry and the regulation of secondary metabolite biosynthesis in myxobacteria. These research efforts paved the way to sophisticated in vitro studies and to the heterologous expression of complete biosynthetic pathways in conjunction with their targeted manipulation. The progress made is a prerequisite for using the vast resource of myxobacterial diversity regarding secondary metabolism more efficiently in the future.

Keywords

Myxobacteria Secondary metabolism Polyketides Non-ribosomally made peptides Heterologous expression Biosynthesis gene cluster 

Notes

Acknowledgements

Research in the laboratory of R.M. was supported by grants from the Deutsche Forschungsgemeinschaft and the BMB+F.

References

  1. 1.
    Bedorf N, Schomburg D, Gerth K, Reichenbach H, Höfle G (1993) Isolation and structure elucidation of soraphen A1, a novel antifungal macrolide from Sorangium cellulosum. Liebigs Ann Chem 1017–1021Google Scholar
  2. 2.
    Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147CrossRefPubMedGoogle Scholar
  3. 3.
    Beyer S, Kunze B, Silakowski B, Müller R (1999) Metabolic diversity in myxobacteria: Identification of the myxalamid and the stigmatellin biosynthetic gene cluster of Stigmatella aurantiaca Sg a15 and a combined polyketide-(poly)peptide gene cluster from the epothilone producing strain Sorangium cellulosum So ce90. Biochim Biophys Acta 1445:185–195PubMedGoogle Scholar
  4. 4.
    Bode HB, Müller R (2005) The impact of bacterial genomics on natural product research. Angew Chem Int Ed Engl 44:6828–6846CrossRefPubMedGoogle Scholar
  5. 5.
    Bode HB, Irschik H, Wenzel SC, Reichenbach H, Müller R, Höfle G (2003) The Leupyrrins: A structurally unique family of secondary metabolites from the myxobacterium Sorangium cellulosum. J Nat Prod 66:1203–1206PubMedCrossRefGoogle Scholar
  6. 6.
    Bode HB, Wenzel SC, Irschik H, Höfle G, Müller R (2004) Unusual biosynthesis of leupyrrins in the myxobacterium Sorangium cellulosum. Angew Chem Int Ed Engl 43:4163–4167CrossRefPubMedGoogle Scholar
  7. 7.
    Carvalho R, Reid R, Viswanathan N, Gramajo H, Julien B (2005) The biosynthetic genes for disorazoles, potent cytotoxic compounds that disrupt microtubule formation. Gene 359:91–98CrossRefPubMedGoogle Scholar
  8. 8.
    Chater KF, Bibb MJ (1997) Regulation of bacterial antibiotic production. In: Rehm H-J, Reed DW (eds) Biotechnology. VCH, Mannheim, pp 149–182Google Scholar
  9. 9.
    Elnakady Y, Sasse F, Lünsdorf H, Reichenbach H (2004) Disorazol A1, a highly effective antimitotic agent acting on tubulin polymerization and inducing apoptosis in mammalian cells. Biochem Pharmacol 67:927–935CrossRefPubMedGoogle Scholar
  10. 10.
    Feng Z, Qi J, Tsuge T, Oba Y, Kobayashi T, Suzuki Y, Sakagami Y, Ojika M (2005) Construction of a bacterial artificial chromosome library for a myxobacterium of the genus Cystobacter and characterization of an antibiotic biosynthetic gene cluster. Biosci Biotechnol Biochem 69:1372–1380CrossRefPubMedGoogle Scholar
  11. 11.
    Gaitatzis N, Kunze B, Müller R (2001) In vitro reconstitution of the myxochelin biosynthetic machinery of Stigmatella aurantiaca Sg a15: Biochemical characterization of a reductive release mechanism from nonribosomal peptide synthetases. PNAS 98:11136–11141CrossRefPubMedGoogle Scholar
  12. 12.
    Gaitatzis N, Silakowski B, Kunze B, Nordsiek G, Blöcker H, Höfle G, Müller R (2002) The biosynthesis of the aromatic myxobacterial electron transport inhibitor stigmatellin is directed by a novel type of modular polyketide synthase. J Biol Chem 277:13082–13090CrossRefPubMedGoogle Scholar
  13. 13.
    Garcia-Bernardo J, Xiang L, Hong H, Moore BS, Leadlay PF (2004) Engineered biosynthesis of phenyl-substituted polyketides. Chembiochem 5:1129–1131CrossRefPubMedGoogle Scholar
  14. 14.
    Gerth K, Müller R (2005) Moderately thermophilic myxobacteria: Novel potential for production of natural products. Environ Microbiol 7:874–880CrossRefPubMedGoogle Scholar
  15. 15.
    Gerth K, Müller R (2006) Development of simple media which allow investigations into the global regulation of chivosazol biosynthesis with Sorangium cellulosum So ce56. J Biotechnol, doi:10.1016/j.jbiotec.2005.1010.1012 (in press)Google Scholar
  16. 16.
    Gerth K, Pradella S, Perlova O, Beyer S, Müller R (2003) Myxobacteria: proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol 106:233–253CrossRefPubMedGoogle Scholar
  17. 17.
    Gronewold TM, Sasse F, Lunsdorf H, Reichenbach H (1999) Effects of rhizopodin and latrunculin B on the morphology and on the actin cytoskeleton of mammalian cells. Cell Tissue Res 295:121–129CrossRefPubMedGoogle Scholar
  18. 18.
    Gross F, Gottschalk D, Müller R (2005) Posttranslational modification of myxobacterial carrier protein domains in Pseudomonas sp. by an intrinsic phosphopantetheinyl transferase. Appl Microbiol Biotechnol 68:66–74CrossRefPubMedGoogle Scholar
  19. 19.
    Gross F, Luniak N, Perlova O, Gaitatzis N, Jenke-Kodama H, Gerth K, Gottschalk D, Dittmann E, Müller R (2006) Bacterial type III polyketide synthases: Phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expession in pseudomonads. Arch Microbiol (in press)Google Scholar
  20. 20.
    Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685CrossRefPubMedGoogle Scholar
  21. 21.
    Hicks LM, O’Connor SE, Mazur MT, Walsh CT, Kelleher NL (2004) Mass spectrometric interrogation of thioester-bound intermediates in the initial stages of epothilone biosynthesis. Chem Biol 11:327–335CrossRefPubMedGoogle Scholar
  22. 22.
    Hill AM, Thompson BL (2003) Novel soraphens from precursor directed biosynthesis. Chem Commun 21(12):1360–1361CrossRefGoogle Scholar
  23. 23.
    Hill A, Thompson BL, Harris JP, Segret R (2003) Investigation of the early stages in soraphen A biosynthesis. Chem Commun 21(12):1358–1359CrossRefGoogle Scholar
  24. 24.
    Höfle G, Reichenbach H (2005) Epothilone, a myxobacterial metabolite with promising antitumor activity. In: Cragg GM, Kingston DG, Newman DJ (eds) Anticancer agents from natural products. Taylor & Francis, Boca Raton, 413–450Google Scholar
  25. 25.
    Iizuka T, Jojima Y, Fudou R, Yamanaka S (1998) Isolation of myxobacteria from the marine environment. FEMS Microbiol Lett 169:317–322PubMedCrossRefGoogle Scholar
  26. 26.
    Iizuka T, Jojima Y, Fudou R, Tokura M, Hiraishi A, Yamanaka S (2003) Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. Syst Appl Microbiol 26:189–196CrossRefPubMedGoogle Scholar
  27. 27.
    Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531CrossRefPubMedGoogle Scholar
  28. 28.
    Irschik H, Trowitzsch-Kienast W, Gerth K, Höfle G, Reichenbach H (1988) Saframycin Mx1, a new natural saframycin isolated from a myxobacterium. J Antibiot (Tokyo) 41:993–998Google Scholar
  29. 29.
    Irschik H, Jansen R, Gerth K, Höfle G, Reichenbach H (1995) Chivosazol A, a new inhibitor of eukaryotic organisms isolated from myxobacteria. J Antibiot (Tokyo) 48:962–966Google Scholar
  30. 30.
    Jansen R, Reifenstahl G, Gerth K, Reichenbach H, Höfle G (1983) Antibiotika aus Gleitenden Bakterien, XV: Myxalamide A, B, C und D, eine Gruppe homologer Antibiotika aus Myxococcus xanthus Mx x12 (Myxobacterales). Liebigs Ann Chem 7:1081–1095CrossRefGoogle Scholar
  31. 31.
    Jansen R, Kunze B, Reichenbach H, Höfle G (1996) Chondramides A-D, new cytostatic ad antifungal cyclodepsipeptides from Chondromyces crocatus (myxobacteria): Isolation and structure elucidation. Liebigs Ann 285–290Google Scholar
  32. 32.
    Jansen R, Irschik H, Reichenbach H, Höfle G (1997) Antibiotics from gliding bacteria, LXXX: Chivosazoles A-F: Novel antifungal and cytotoxic macrolides from Sorangium cellulosum (Myxobacteria). Liebigs Ann 1725–1732Google Scholar
  33. 33.
    Jansen R, Kunze B, Reichenbach H, Höfle G (2000) Antibiotics from gliding bacteria LXXXVI, Apicularen A and B, cytotoxic 10-membered lactones with a novel mechanism of action from Chondromyces species (myxobacteria): Isolation, structure elucidation, and biosynthethis. Eur J Org Chem 6:913–919CrossRefGoogle Scholar
  34. 34.
    Julien B, Shah S (2002) Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus. Antimicrob Agents Chemother 46:2772–2778CrossRefPubMedGoogle Scholar
  35. 35.
    Julien B, Shah S, Ziermann R, Goldman R, Katz L, Khosla C (2000) Isolation and characterization of the epothilone biosynthetic gene cluster from Sorangium cellulosum. Gene 249:153–160CrossRefPubMedGoogle Scholar
  36. 36.
    Kegler C, Gerth K, Müller R (2006) Establishment of a real-time PCR protocol for expression studies of secondary metabolite biosynthetic gene clusters in the G/C-rich myxobacterium Sorangium cellulosum So ce56. J Biotechnol 121:201–212CrossRefPubMedGoogle Scholar
  37. 37.
    Kopp M, Irschik H, Gross F, Perlova O, Sandmann A, Gerth K, Müller R (2004) Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. J Biotechnol 107:29–40CrossRefPubMedGoogle Scholar
  38. 38.
    Kopp M, Irschik H, Pradella S, Müller R (2005) Production of the tubulin destabilizer disorazol in Sorangium cellulosum: biosynthetic machinery and regulatory genes. Chembiochem 6:1277–1286CrossRefPubMedGoogle Scholar
  39. 39.
    Kunze B, Bedorf N, Kohl W, Höfle G, Reichenbach H (1989) Myxochelin A, a new iron-chelating compound from Angiococcus disciformis (Myxobacterales). Production, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 42:14–17Google Scholar
  40. 40.
    Kunze B, Reichenbach H, Müller R, Höfle G (2005) Aurafuron A and B, new bioactive polyketides from Stigmatella aurantiaca and Archangium gephyra (myxobacteria). J Antibiot (Tokyo) 58:244–251Google Scholar
  41. 41.
    Lau J, Frykman S, Regentin R, Ou S, Tsuruta H, Licari P (2002) Optimizing the heterologous production of epothilone D in Myxococcus xanthus. Biotechnol Bioeng 78:280–288CrossRefPubMedGoogle Scholar
  42. 42.
    Li YZ, Hu W, Zhang YQ, Qiu Z, Zhang Y, Wu BH (2002) A simple method to isolate salt-tolerant myxobacteria from marine samples. J Microbiol Methods 50:205–209CrossRefPubMedGoogle Scholar
  43. 43.
    Ligon J, Hill S, Beck J, Zirkle R, Molnar I, Zawodny J, Money S, Schupp T (2002) Characterization of the biosynthetic gene cluster for the antifungal polyketide soraphen A from Sorangium cellulosum So ce26. Gene 285:257–267CrossRefPubMedGoogle Scholar
  44. 44.
    Molnar I, Schupp T, Ono M, Zirkle R, Milnamow M, Nowak-Thompson B, Engel N, Toupet C, Stratmann A, Cyr DD, Gorlach J, Mayo JM, Hu A, Goff S, Schmid J, Ligon JM (2000) The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem Biol 7:97–109CrossRefPubMedGoogle Scholar
  45. 45.
    Moss SJ, Martin CJ, Wilkinson B (2004) Loss of co-linearity by modular polyketide synthases: a mechanism for the evolution of chemical diversity. Nat Prod Rep 21:575–593CrossRefPubMedGoogle Scholar
  46. 46.
    Niggemann J, Herrmann M, Gerth K, Irschik H, Reichenbach H, Höfle G (2004) Tuscolid and tuscoron A and B: Isolation, structural elucidation and studies on the biosynthesis of novel Furan-3(2H)-one-containing metabolites from the myxobacterium Sorangium cellulosum. Eur J Org Chem 487–492Google Scholar
  47. 47.
    O’Connor SE, Walsh CT, Liu F (2003) Biosynthesis of epothilone intermediates with alternate starter units: Engineering polyketide-nonribosomal interfaces. Angew Chem Int Ed Engl 42:3917–3921CrossRefPubMedGoogle Scholar
  48. 48.
    Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA 98:12215–12220CrossRefPubMedGoogle Scholar
  49. 49.
    Oxford AE (1947) Observations concerning the growth and metabolic activities of myxococci in a simple protein-free liquid medium. J Bacteriol 53:129–138Google Scholar
  50. 50.
    Paitan Y, Alon G, Orr E, Ron EZ, Rosenberg E (1999) The first gene in the biosynthesis of the polyketide antibiotic TA of Myxococcus xanthus codes for a unique PKS module coupled to a peptide synthetase. J Mol Biol 286:465–474CrossRefPubMedGoogle Scholar
  51. 51.
    Perlova O, Gerth K, Hans A, Kaiser O, Müller R (2006) Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum So ce56. J Biotechnol 121:174–191CrossRefPubMedGoogle Scholar
  52. 52.
    Petit F, Guespin-Michel JF (1992) Production of an extracellular milk-clotting activity during development in Myxococcus xanthus. J Bacteriol 174:5136–5140PubMedGoogle Scholar
  53. 53.
    Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunaga S (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA 101:16222–16227CrossRefPubMedGoogle Scholar
  54. 54.
    Pospiech A, Cluzel B, Bietenhader H, Schupp T (1995) A new Myxococcus xanthus gene cluster for the biosynthesis of the antibiotic saframycin Mx1 encoding a peptide synthetase. Microbiology 141:1793–1803PubMedGoogle Scholar
  55. 55.
    Pospiech A, Bietenhader J, Schupp T (1996) Two multifunctional peptide synthetases and an O-methyltransferase are involved in the biosynthesis of the DNA-binding antibiotic and antitumour agent saframycin Mx1 from Myxococcus xanthus. Microbiology 142( Pt 4):741–746PubMedCrossRefGoogle Scholar
  56. 56.
    Rachid S, Sasse F, Beyer S, Müller R (2005) Identification of StiR, the first regulator of secondary metabolite formation in the myxobacterium Cystobacter fuscus Cb f17.1. J Biotechnol, doi:10.1016/j.jbiotec.2005.08.014 (in press)Google Scholar
  57. 57.
    Reichenbach H (2001) Myxobacteria, producers of novel bioactive substances. J Ind Microbiol Biotechnol 27:149–156CrossRefPubMedGoogle Scholar
  58. 58.
    Reichenbach H, Höfle G (1999) Myxobacteria as producers of secondary metabolites. In: Grabley S, Thiericke R (eds) Drug discovery from nature. Springer, Berlin Heidelberg New York, pp 149–179Google Scholar
  59. 59.
    Ringel SM, Greenough RC, Roemer S, Connor D, Gutt AL, Blair B, Kanter G, von S (1977) Ambruticin (W7783), a new antifungal antibiotic. J Antibiot (Tokyo) 30:371–375Google Scholar
  60. 60.
    Rix U, Fischer C, Remsing LL, Rohr J (2002) Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat Prod Rep 19:542–580CrossRefPubMedGoogle Scholar
  61. 61.
    Sandmann A, Sasse F, Müller R (2004) Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chem Biol 11:1071–1079CrossRefPubMedGoogle Scholar
  62. 62.
    Sasse F, Steinmetz H, Höfle G, Reichenbach H (1993) Rhizopodin, a new compound from Myxococcus stipitatus (myxobacteria) causes formation of rhizopodia-like structures in animal cell cultures. Production, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 46:741–748Google Scholar
  63. 63.
    Sasse F, Kunze B, Gronewold TM, Reichenbach H (1998) The chondramides: cytostatic agents from myxobacteria acting on the actin cytoskeleton. J Natl Cancer Inst 90:1559–1563CrossRefPubMedGoogle Scholar
  64. 64.
    Sasse F, Steinmetz H, Heil J, Höfle G, Reichenbach H (2000) Tubulysins, new cytostatic peptides from myxobacteria acting on microtubuli: production, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 53:879–885Google Scholar
  65. 65.
    Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci USA 102:7315–7320CrossRefPubMedGoogle Scholar
  66. 66.
    Schneider TL, Walsh CT, O’Connor SE (2002) Utilization of alternate substrates by the first three modules of the epothilone synthetase assembly line. J Am Chem Soc 124:11272–11273CrossRefPubMedGoogle Scholar
  67. 67.
    Schupp T, Toupet C, Cluzel B, Neff S, Hill S, Beck JJ, Ligon JM (1995) A Sorangium cellulosum (myxobacterium) gene cluster for the biosynthesis of the macrolide antibiotic soraphen A: cloning, characterization, and homology to polyketide synthase genes from actinomycetes. J Bacteriol 177:3673–3679PubMedGoogle Scholar
  68. 68.
    Silakowski B, Schairer HU, Ehret H, Kunze B, Weinig S, Nordsiek G, Brandt P, Blöcker H, Höfle G, Beyer S, Müller R (1999) New lessons for combinatorial biosynthesis from myxobacteria: The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1. J Biol Chem 274:37391–37399CrossRefPubMedGoogle Scholar
  69. 69.
    Silakowski B, Kunze B, Nordsiek G, Blöcker H, Höfle G, Müller R (2000) The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15. Eur J Biochem 267:6476–6485CrossRefPubMedGoogle Scholar
  70. 70.
    Silakowski B, Kunze B, Müller R (2001) Multiple hybrid polyketide synthase/non-ribosomal peptide synthetase gene clusters in the myxobacterium Stigmatella aurantiaca. Gene 275:233–240CrossRefPubMedGoogle Scholar
  71. 71.
    Silakowski B, Nordsiek G, Kunze B, Blöcker H, Müller R (2001) Novel features in a combined polyketide synthase/non-ribosomal peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga15. Chem Biol 8:59–69CrossRefPubMedGoogle Scholar
  72. 72.
    Sola-Landa A, Moura RS, Martin JF (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci USA 100:6133–6138CrossRefPubMedGoogle Scholar
  73. 73.
    Söker U, Kunze B, Reichenbach H, Höfle G (2003) Dawenol, a new polyene metabolite from the myxobacterium Stigmatella aurantiaca. Z Naturforsch B 58:1024–1026Google Scholar
  74. 74.
    Tang L, Shah S, Chung L, Carney J, Katz L, Khosla C, Julien B (2000) Cloning and heterologous expression of the epothilone gene cluster. Science 287:640–642CrossRefPubMedGoogle Scholar
  75. 75.
    Trowitzsch Kienast W, Schober K, Wray V, Gerth K, Reichenbach H, Höfle G (1989) Zur Konstitution der Myxovirescine B-T und Biogenese des Myxovirescins A. Liebigs Ann 345–355Google Scholar
  76. 76.
    Valton J, Filisetti L, Fontecave M, Niviere V (2004) A two-component flavin-dependent monooxygenase involved in actinorhodin biosynthesis in Streptomyces coelicolor. J Biol Chem 279:44362–44369CrossRefPubMedGoogle Scholar
  77. 77.
    Weinig S, Hecht HJ, Mahmud T, Müller R (2003) Melithiazol biosynthesis: further insights into myxobacterial PKS/NRPS systems and evidence for a new subclass of methyl transferases. Chem Biol 10:939–952CrossRefPubMedGoogle Scholar
  78. 78.
    Wenzel S, Müller R (2005) Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol 16:594–606CrossRefPubMedGoogle Scholar
  79. 79.
    Wenzel SC, Müller R (2005) Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from text book biosynthetic logic. Curr Opin Chem Biol 9:447–458CrossRefPubMedGoogle Scholar
  80. 80.
    Wenzel SC, Gross F, Zhang Y, Fu J, Stewart FA, Müller R (2005) Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via red/ET recombineering. Chem Biol 12:349–356CrossRefPubMedGoogle Scholar
  81. 81.
    Wenzel SC, Kunze B, Höfle G, Silakowski B, Scharfe M, Blöcker H, Müller R (2005) Structure and biosynthesis of myxochromides S1-3 in Stigmatella aurantiaca: Evidence for an iterative bacterial type I polyketide synthase and for module skipping in nonribosomal peptide biosynthesis. Chembiochem 6:375–385CrossRefPubMedGoogle Scholar
  82. 82.
    Wenzel SC, Meiser P, Binz T, Mahmud T, Müller R (2006) Nonribosomal peptide biosynthesis: point mutations and module skipping lead to chemical diversity. Angew Chem Int Ed Engl (in press)Google Scholar
  83. 83.
    Wilkinson CJ, Frost EJ, Staunton J, Leadlay PF (2001) Chain initiation on the soraphen-producing modular polyketide synthase from Sorangium cellulosum. Chem Biol 8:1197–1208CrossRefPubMedGoogle Scholar
  84. 84.
    Zhang Y, Buchholz F, Muyrers J, Stewart F (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128CrossRefPubMedGoogle Scholar
  85. 85.
    Zhang Y, Muyrers J, Testa G, Stewart A (2000) DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol 18:1314–1317CrossRefPubMedGoogle Scholar
  86. 86.
    Zirkle R, Ligon JM, Molnar I (2004) Heterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans. Microbiology 150:2761–2774CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2006

Authors and Affiliations

  1. 1.Pharmaceutical BiotechnologySaarland UniversitySaarbrückenGermany

Personalised recommendations