The current status of natural products from marine fungi and their potential as anti-infective agents

  • Punyasloke Bhadury
  • Balsam T. Mohammad
  • Phillip C. Wright
Review

Abstract

A growing number of marine fungi are the sources of novel and potentially life-saving bioactive secondary metabolites. Here, we have discussed some of these novel antibacterial, antiviral, antiprotozoal compounds isolated from marine-derived fungi and their possible roles in disease eradication. We have also discussed the future commercial exploitation of these compounds for possible drug development using metabolic engineering and post-genomics approaches.

Keywords

Marine natural products Fungi Metabolic engineering Marine biotechnology 

Notes

Acknowledgements

Punyasloke Bhadury acknowledges the Department for International Development (DFID), Heriot Watt University (HWU) and the Association of Commonwealth Universities (ACU) for the provision of a DFID Scholarship. Phillip Wright acknowledges the EPSRC for an Advanced Research Fellowship.

References

  1. 1.
    Abdel-Lateff A, Fisch KM, Wright AD, Konig GM (2003a) A new antioxidant isobenzofuranone derivative from the algicolous marine fungus Epicoccum sp. Planta Med 69:831–834Google Scholar
  2. 2.
    Abdel-Lateff A, Klemke C, Konig GM, Wright AD (2003b) Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. J Nat Prod 66:706–708Google Scholar
  3. 3.
    Abrell LM, Borgeson B, Crews P (1996) A new polyketide, secocurvularin, from the salt water culture of a sponge derived fungus. Tetrahedron Lett 37:8983–8984Google Scholar
  4. 4.
    Aharonowitz Y, Cohen G, Martin JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 46:461–495Google Scholar
  5. 5.
    Altomare C, Perrone G, Zonno MC, Evidente A, Pengue R, Fanti F, Polonelli L (2000) Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. J Nat Prod 63:1131–1135Google Scholar
  6. 6.
    Amagata T, Amagata A, Tenney K, Valeriote FA, Lobkovsky E, Clardy J, Crews P (2003) Unusual C25 steroids produced by a sponge-derived Penicillium citrinum. Org Lett 5:4393–4396Google Scholar
  7. 7.
    Anaissie E (1992) Opportunistic mycoses in the immunocompromised host: experience at a cancer center and review. Clin Infect Dis Suppl 14:S43–S53Google Scholar
  8. 8.
    Bailey JE (1991) Towards a science of metabolic engineering. Science 252:1668–1675Google Scholar
  9. 9.
    Baker DD, Alvi KA (2004) Small-molecule natural products: new structures, new activities. Curr Opin Biotechnol 15:576–583Google Scholar
  10. 10.
    Balakrishnan K, Pandey A (1996) Production of biologically active metabolites in solid-state fermentation. J Sci Ind Res 55:365–372Google Scholar
  11. 11.
    Barredo JL, Martin JF (1991) Genes directly involved in the biosynthesis of beta-lactam antibiotics. Microbiologia 7:1–12Google Scholar
  12. 12.
    Barrett (2002) From natural products to clinically useful antifungals. Biochim Biophys Acta 1587:224–233Google Scholar
  13. 13.
    Barrett MP, Mottram JC, Coombs GH (1999) Recent advances in identifying and validating drug targets in trypanosomes and leishmanias. Trends Microbiol 7:82–88Google Scholar
  14. 14.
    Barrett MP, Burchmore RJ, Stich A, Lazzari JO, Frasch AC, Cazzulo JJ, Krishna S (2003) The trypanosomiasis. Lancet 362:1469–1480Google Scholar
  15. 15.
    Barrios-Gonzalez J, Mejía A (1996) Production of secondary metabolites by solid-state fermentation. Biotechnol Annu Rev 2:85–88Google Scholar
  16. 16.
    Barrios-Gonzalez J, Castillo TE, Mejía A (1993) Development of high penicillin-producing strains for solid state fermentation. Biotechnol Adv 11:525–537Google Scholar
  17. 17.
    Berk D, Behie LA, Jones A, Lesser BH, Gaucher M (1984) The production of the antibiotic patulin in a three phased fluidized bed reactor. II. The longevity of the biocatalyst. Can J Chem Eng 62:120–124Google Scholar
  18. 18.
    Bernal A, Ear U, Kyrpides N (2001) Genomes online database (GOLD): a monitor of genome projects world-wide. Nucleic Acids Res 29:126–127Google Scholar
  19. 19.
    Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578Google Scholar
  20. 20.
    Bijev A, Nankov A, Keuleyan E, Markovska R, Daneva E (2004) Synthesis and preliminary antimicrobial evaluation of new 7-(N-pyrrolyl) derivatives of cephalosporins. Arzneimittelforschung 54:119–124Google Scholar
  21. 21.
    Brooker S, Clarke S, Njagi JK, Polack S, Mugo B, Estambale B, Muchiri E, Magnussen P, Cox J (2004) Spatial clustering of malaria and associated risk factors during an epidemic in a highland area of western Kenya. Trop Med Int Health 9:757–766Google Scholar
  22. 22.
    Bugni TS, Ireland CM (2004) Marine derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163Google Scholar
  23. 23.
    Capon RJ, Skene C, Stewart M, Ford J, O’Hair RA, Williams L, Lacey E, Gill JH, Heiland K, Friedel T (2003) Aspergillicins A–E: five novel depsipeptides from the marine-derived fungus Aspergillus carneus. Org Biomol Chem 1:1856–1862Google Scholar
  24. 24.
    Che Y, Gloer JB, Wicklow DT (2002) Phomadecalins A–D and Phomapentenone A: new bioactive metabolites from Phoma sp. NRRL 25697, a fungal colonist of Hypoxylon stromata. J Nat Prod 65:399–402Google Scholar
  25. 25.
    Cheng XC, Varoglu M, Abrell L, Crews P, Lobkovsky E, Clardy J (1994) Chloriolins A–C, chlorinated sesquiterpenes produced by fungal cultures separated from a Jaspis marine sponge. J Org Chem 59:6344–6348Google Scholar
  26. 26.
    Chinworrungsee M, Kittakoop P, Isaka M, Rungrod A, Tanticharoen M, Thebtaranonth Y (2001) Antimalarial Halorosellinic acid from the marine fungus Halorosellinia oceanica. Bioorg Med Chem Lett 11:1965–1969Google Scholar
  27. 27.
    Chinworrungsee M, Kittakoop P, Isaka M, Chanphen R, Tanticharoen M, Thebtaranonth Y (2002) Halorosellins A and B, unique isocoumarin glucosides from the marine fungus Halorosellinia oceanica. J Chem Soc Perkin Trans I 22:2473–2476Google Scholar
  28. 28.
    Christie SN, McCaughey C, McBride M, Coyle PV (1997) Herpes simplex type 1 and genital herpes in Northern Ireland. Int J STD AIDS 8:68–69Google Scholar
  29. 29.
    Coates A, Hu Y, Bax R, Page C (2002) The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 1:895–910Google Scholar
  30. 30.
    Colwell RR (1985) Marine polysaccharides for pharmaceutical and microbiological applications. In: Colwell RR, Pariser ER, Sinskey AJ (eds) Biotechnology of marine polysaccharides. Proceedings of the 3rd annual MIT seer grant college program lecture and seminar. Hemisphere Publishing, Washington, pp 364–376Google Scholar
  31. 31.
    Colwell RR (2002) Fulfilling the promise of biotechnology. Biotechnol Adv 20:215–228Google Scholar
  32. 32.
    Cooper BS, Medley GF, Stone SP, Kibbler CC, Cookson BD, Roberts JA, Duckworth G, Lai R, Ebrahim S (2004) Methicillin-resistant Staphylococcus aureus in hospitals and the community: stealth dynamics and control catastrophes. Proc Natl Acad Sci USA 101:10223–10228Google Scholar
  33. 33.
    Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60Google Scholar
  34. 34.
    Crews P, Manes LV, Boehler M (1986) Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis sp. Tetrahedron Lett 27:2797–2800Google Scholar
  35. 35.
    Cruz AJ, Pan T, Giordano RC, Araujo ML, Hokka CO (2004) Cephalosporin C production by immobilized Cephalosporium acremonium cells in a repeated batch tower bioreactor. Biotechnol Bioeng 85:96–102Google Scholar
  36. 36.
    Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64:1444–1446Google Scholar
  37. 37.
    Daferner M, Mensch S, Anke T, Sterner O (1999) Hypoxysordarin, a new sordarin derivative from Hypoxylon croceum. Z Naturforsch C 54:474–480Google Scholar
  38. 38.
    Daferner M, Anke T, Sterner O (2002) Zopfiellamides A and B, antimicrobial pyrrolidinone derivatives from the marine fungus Zopfiella latipes. Tetrahedron 58:7781–7784Google Scholar
  39. 39.
    Davidson BS (1995) New dimensions in natural products research: cultured marine microorganisms. Curr Opin Biotechnol 6:284–291Google Scholar
  40. 40.
    Demain AL (2000) Small bugs, big business: the economic power of the microbe. Biotechnol Adv 18:499–514Google Scholar
  41. 41.
    Diez BS, Gutiérrez G, Barredo JL, van Solingen P, van der Voort LHM, Martin JF (1990) The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the β-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and penDE genes. J Biol Chem 265:16358–16365Google Scholar
  42. 42.
    Dominguez TJ (2004) It’s not a spider bite, it’s community-acquired methicillin-resistant Staphylococcus aureus. J Am Board Fam Pract 17:220–226Google Scholar
  43. 43.
    Donia M, Hamann MT (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 3:338–348Google Scholar
  44. 44.
    Du L, Sanchez C, Shen B (2001) Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab Eng 3:78–95Google Scholar
  45. 45.
    Edrada RA, Heubes M, Brauers G, Wray V, Berg A, Gräfe U, Wohlfarth M, Mühlbacher J, Schaumann K, Sudarsono S, Bringmann G, Proksch P (2002) Online analysis of xestodecalactones A–C, novel bioactive metabolites from the fungus Penicillium cf. montanense and their subsequent isolation from the sponge Xestospongia exigua. J Nat Prod 65:1598–1604Google Scholar
  46. 46.
    Faulkner DJ (2000a) Highlights of marine natural products chemistry (1972–1999). Nat Prod Rep 17:1–6Google Scholar
  47. 47.
    Faulkner DJ (2000b) Marine pharmacology. Antonie van Leeuwenhoek 77:135–145Google Scholar
  48. 48.
    Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1–49Google Scholar
  49. 49.
    Fenical W (1997) New pharmaceuticals from marine organisms. Trends Biotechnol 15:339–341Google Scholar
  50. 50.
    Fenical W, Jensen PR (1993) Marine microorganisms: a new biomedical resource. In: Attaway DH, Zaborsky OR (eds) Marine biotechnology, vol 1. Plenum Press, New York, pp 419–457Google Scholar
  51. 51.
    Gallo ML, Seldes AM, Cabrera GM (2004) Antibiotic long-chain and α, β-unsaturated aldehydes from the culture of the marine fungus Cladosporium sp. Biochem Syst Ecol 32:545–551Google Scholar
  52. 52.
    Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine derived fungus Trichoderma virens. J Nat Prod 66:423–426Google Scholar
  53. 53.
    Gautschi JT, Amagata T, Amagata A, Valeriote FA, Mooberry SL, Crews P (2004) Expanding the strategies in natural product studies of marine-derived fungi: a chemical investigation of Penicillium obtained from deep water sediment. J Nat Prod 67:362–367Google Scholar
  54. 54.
    Geng X, Danishefsky SJ (2004) Total synthesis of aigialomycin D. Org Lett 6:413–416Google Scholar
  55. 55.
    Gonzalez IJ, Varela RE, Murillo C, Ferro BE, Salas J, Giraldo LE, Zalis MG, Saravia NG (2003) Polymorphisms in cg2 and pfcrt genes and resistance to chloroquine and other antimalarials in vitro in Plasmodium falciparum isolates from Colombia. Trans R Soc Trop Med Hyg 97:318–324Google Scholar
  56. 56.
    Gu W, Liu SS, Silverman RB (2002) Solid-phase, Pd-catalyzed silicon-aryl carbon bond formation. Synthesis of sansalvamide A peptide. Org Lett 4:4171–4174Google Scholar
  57. 57.
    Hofmann G, McIntyre M, Nielsen J (2003) Fungal genomics beyond Saccharomyces cerevisiae. Curr Opin Biotechnol 14:226–231Google Scholar
  58. 58.
    Hopwood DA, Sherman DH (1990) Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 24:37–66Google Scholar
  59. 59.
    Huang J, LihCJ, Pan KH, Cohen SN (2001) Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthesis pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev 15:3183–3192Google Scholar
  60. 60.
    Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 55:1049–1053Google Scholar
  61. 61.
    Höller U (1999) Isolation, biological activity and secondary metabolite investigations of marine derived fungi and selected host sponges. PhD Thesis, Universität Carolo-Wilhelmina, p 163Google Scholar
  62. 62.
    Höller U, König GM, Wright AD (1999a) Three new metabolites from marine-derived fungi of the genera Coniothyrium and Microsphaeropsis. J Nat Prod 62:114–118Google Scholar
  63. 63.
    Höller U, König GM, Wright AD (1999b) A new tyrosine kinase inhibitor from a marine isolate of Ulocladium botrytis and new metabolites from the marine fungus Asteromyces cruciatus and Variosporina ramulosa. Eur J Org Chem 1999:2949–2955Google Scholar
  64. 64.
    Höller U, Wright AD, Matthee GF, Konig GM, Draeger S, Aust HJ, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354 –1365Google Scholar
  65. 65.
    Höllker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186Google Scholar
  66. 66.
    Isaka M, Suyarnsestakorn C, Tanticharoen M, Kongsaeree P, Thebtaranonth Y (2002) Aigialomycins A–E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J Org Chem 67:1561–1566Google Scholar
  67. 67.
    Jadulco R, Proksch P, Wray V, Sudarsono, Berg A, Gräfe U (2001) New macrolides and furan carboxylic acid derivative from the sponge-derived fungus Cladosporium herbarum. J Nat Prod 64:527–530Google Scholar
  68. 68.
    Jadulco R, Brauers G, Edrada RA, Ebel R, Wray V, Sudarsono S, Proksch P (2002) New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J Nat Prod 65:730–733Google Scholar
  69. 69.
    Jensen PR, Fenical W (2002) In: Hyde KD (ed) Fungi in marine environments, vol 7. Fungal diversity, Hong Kong, pp 293–315Google Scholar
  70. 70.
    Jiang Z, Barret MO, Boyd KG, Adams DR, Boyd ASF, Burgess JG (2002) JM47, a cyclic tetrapeptide HC-toxin analogue from a marine Fusarium species. Phytochemistry 60:33–38Google Scholar
  71. 71.
    Kim C-F, Lee SKY, Price J, Jack RW, Turner G, Kong RYC (2003) Cloning and expression analysis of the pcbAB-pcbC β-Lactam genes in the marine fungi Kallichroma tethys. Appl Environ Microbiol 69:1308–1314Google Scholar
  72. 72.
    Kiszewski AE, Teklehaimanot A (2004) A review of the clinical and epidemiologic burdens of epidemic malaria. Am J Trop Med Hyg 271:128–135Google Scholar
  73. 73.
    Klemke C, Kehraus S, Wright AD, Konig GM (2004) New secondary metabolites from the marine endophytic fungus Apiospora montagnei. J Nat Prod 67:1058–1063Google Scholar
  74. 74.
    Kmietowicz Z (2000) WHO warns of threat of superbugs. BMJ 320:1624Google Scholar
  75. 75.
    Kobayashi J, Ishibashi M (1993) Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 93:1753–1769Google Scholar
  76. 76.
    Kohlmeyer J (1974) Veröff Inst. Meeresforsch. Bremerhaven Suppl 5:263–286 Google Scholar
  77. 77.
    Konig GM, Wright AD, Sticher O, Angerhofer CK, Pezzuto JM (1994) Biological activities of selected marine natural products. Planta Med 60:532–537Google Scholar
  78. 78.
    Kundu S, Mahapatra AC, KumarNigam V, Kundu K (2003) Continuous production of cephalosporin-C by immobilized microbial cells using symbiotic mode in a packed bed bioreactor. Artif Cells Blood Substit Immobil Biotechnol 31:313–327Google Scholar
  79. 79.
    Kupka J, Anke T, Steglich W, Zechlin L (1981) Antibiotics from basidiomycetes. XI. The biological activity of siccayne, isolated from the marine fungus Halocyphina villosa J. & E. Kohlmeyer. J Antibiot (Tokyo) 34:298–304Google Scholar
  80. 80.
    Kuznetsova TA, Smetanina OF, Afiyatullov SS, Pivkin MV, Denisenko VA, Elyakov GB (2001) The identification of fusidic acid, a steroidal antibiotic marine isolate of the fungus Stilbella aciculosa. Biochem Syst Ecol 29:873–874Google Scholar
  81. 81.
    Lee Y, Silverman RB (2000) Rapid, high-yield, solid-phase synthesis of the antitumor antibiotic sansalvamide A using a side-chain-tethered phenylalanine building block. Org Lett 2:3743–3746Google Scholar
  82. 82.
    Lee GT, Lee SY, Jeong JH, Jo BK, Li XF, Son BW (2003) PP-35 Screening of tyrosinase inhibiting activity from the marine-derived fungus. Pigment Cell Res 16:604Google Scholar
  83. 83.
    Li A, Piel J (2000) A gene cluster from a marine Streptomyces encoding the biosynthesis of the aromatic spiroketal polyketide griseorhodin A. Chem Biol 9:1017–1026Google Scholar
  84. 84.
    Li HY, Matsunaga S, Fusetani N (1998) Antifungal metabolites from marine sponges. Curr Org Chem 2:649–682Google Scholar
  85. 85.
    Li X, Choi HD, Kang JS, Lee CO, Son BW (2003a) New polyoxygenated farnesylcyclohexenones, deacetoxyyanuthone A and its hydro derivative from the marine-derived fungus Penicillium sp. J Nat Prod 66:1499–1500Google Scholar
  86. 86.
    Li X, Jeong JH, Lee KT, Rho JR, Choi HD, Kang JS, Son BW (2003b) Gamma-pyrone derivatives, kojic acid methyl ethers from a marine-derived fungus Alternaria [correction of Altenaria] sp. Arch Pharm Res 26:532–534Google Scholar
  87. 87.
    Li X, Kim MK, Lee U, Kim SK, Kang JS, Choi HD, Son BW (2005) Myrothenones A and B, cyclopentenone derivatives with tyrosinase inhibitory activity from the marine-derived fungus Myrothecium sp. Chem Pharm Bull (Tokyo) 53:453–455Google Scholar
  88. 88.
    Liberra K, Jansen R, Lindequist U (1998) Corollosporine, a new phthalide derivative from the marine fungus Corollospora maritima Werderm 1069. Pharmazie 53:578–581Google Scholar
  89. 89.
    Lin W, Brauers G, Ebel R, Wray V, Berg A, Sudarsono, Proksch P (2003) Novel chromone derivatives from the fungus Aspergillus versicolor isolated from the marine sponge Xestospongia exigua. J Nat Prod 66:57–61Google Scholar
  90. 90.
    Liu CH, Meng JC, Zou WX, Huang LL, Tang HQ, Tan RX (2002) Antifungal metabolite with a new carbon skeleton from Keissleriella sp YS4108, a marine filamentous fungus. Planta Med 68:363–365Google Scholar
  91. 91.
    Liu CH, Liu JY, Huang LL, Zou WX, Tan RX (2003a) Absolute configuration of keisslone, a new antimicrobial metabolite from Keissleriella sp. YS4108, a marine filamentous fungus. Planta Med 69:481–483Google Scholar
  92. 92.
    Liu Z, Jensen PR, Fenical W (2003b) A cyclic carbonate and related polyketides from a marine-derived fungus of the genus Phoma. Phytochemistry 64:571–574Google Scholar
  93. 93.
    Lorenz R, Molitoris HP (1992) High pressure cultivation of marine fungi: apparatus and method. In: Balny C, Hayashi R, Masson P (eds) High pressure and biotechnology. John Libbey & Co, London, pp 537–539Google Scholar
  94. 94.
    Lum AM, Huang J, Hutchinson CR, Kao CM (2004) Reverse engineering of industrial pharmaceutical-producing actinomycetes strains using DNA microarrays. Metab Eng 6:186–196Google Scholar
  95. 95.
    Luo J, Yang Y, Lin Y, Chen Z, Jiang G (2004) Antioxidative activities of two metabolites of cultured marine fungus, Halorosellinia oceanicum 323 in vitro. Zhong Yao Cai 27:188–192Google Scholar
  96. 96.
    Lépingle A, Casaregola S, Neuvéglise C, Bon E, Nguyen HV, Artiguenave F, Wincker P, Gaillardin C (2000) Genomic Exploration of the Hemiascomycetous Yeasts:14. Debaryomyces hansenii var. hansenii. FEBS Lett 487:82–86Google Scholar
  97. 97.
    MacCabe AP, Riach MBR, Unkles SE, Kinghorn JR (1990) The Aspergillus nidulans npeA locis consists of three contiguous genes required for penicillin biosynthesis. EMBO J 9:279–287Google Scholar
  98. 98.
    Malakoff D (1997) Extinction on the high seas. Science 277:486–488Google Scholar
  99. 99.
    Malstrøm J, Christophersen C, Barrero AF, Oltra JE, Justicia J, Rosales A (2002) Bioactive metabolites from a marine derived strain of the fungus Emericella variecolor. J Nat Prod 65:364–367Google Scholar
  100. 100.
    Mandwal AK, Tripathi CK, Trivedi PD, Joshi AK, Agarwal SC, Bihari V (2004) Production of l-phenylacetyl carbinol by immobilized cells of Saccharomyces cerevisiae. Biotechnol Lett 26:217–221Google Scholar
  101. 101.
    Mankelow DP, Neilan BA (2000) Non-ribosomal peptide antibiotics. Expert Opin Ther Patents 10:1583–1591Google Scholar
  102. 102.
    Martín JF (1998) New aspects of genes and enzymes for ß-lactam antibiotic biosynthesis. Appl Microbiol Biotechnol 50:1–15Google Scholar
  103. 103.
    Martín JF (2000) Alpha-aminoadipyl-cysteinyl-valine synthetases in beta-lactam producing organisms. From Abraham’s discoveries to novel concepts of non-ribosomal peptide synthesis. J Antibiot 53:1008–1021Google Scholar
  104. 104.
    Mathison L, Soliday C, Stpean T, Aldrich T, Rambosek J (1993) Cloning and characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyl transferase. Curr Genet 23:33–41Google Scholar
  105. 105.
    Mayer AM, Hamann MT (2002) Marine pharmacology in 1999: compounds with antibacterial, anticoagulant, antifungal, anthelmintic, anti-inflammatory, antiplatelet, antiprotozoal and antiviral activities affecting the cardiovascular, endocrine, immune and nervous systems, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 132:315–339Google Scholar
  106. 106.
    Mayer AM, Hamann MT (2004) Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar Biotechnol 6:37–52Google Scholar
  107. 107.
    Mehta AS, Gu B, Conyers B, Ouzounov S, Wang L, Moriarty RM, Dwek RA, Block TM (2004) alpha-Galactosylceramide and novel synthetic glycolipids directly induce the innate host defense pathway and have direct activity against hepatitis B and C viruses. Antimicrob Agents Chemother 48:2085–2090Google Scholar
  108. 108.
    Minagawa K, Kouzuki S, Yoshimoto J, Kawamura Y, Tani H, Iwata T, Terui Y, Nakai H, Yagi S, Hattori N, Fujiwara T, Kamigauchi T (2002) Stachyflin and acetylstachyflin, novel anti-influenza A virus substances, produced by Stachybotrys sp. RF-7260. I. Isolation, structure elucidation and biological activities. J Antibiot (Tokyo) 55(2):155–164Google Scholar
  109. 109.
    Mishra SK, Satpathy SK, Mohanty S (1999) Survey of malaria treatment and deaths. Bull World Health Organ 77:1020Google Scholar
  110. 110.
    Moore BS, Piel J (2000) Engineering biodiversity with type II polyketide synthase genes. Antonie van Leeuwenhoek 78:391–398Google Scholar
  111. 111.
    Mootz HD, Schwarzer D, Marahiel MA (2002) Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3:490–504Google Scholar
  112. 112.
    Munro MHG, Blunt JW, Dumdei EJ, Hickford SJH, Lill RE, Li SX, Battershill CN, Duckworth AR (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70:15–25Google Scholar
  113. 113.
    Nagai K, Kamigiri K, Matsumoto H, Kawano Y, Yamaoka M, Shimoi H, Watanabe M, Suzuki K (2002) YM-202204, a new antifungal antibiotic produced by marine fungus Phoma sp. J Antibiot (Tokyo) 55:1036–1041Google Scholar
  114. 114.
    Nagaraju U, Bhat G, Kuruvila M, Pai GS, Jayalakshmi, Babu RP (2004) Methicillin-resistant Staphylococcus aureus in community-acquired pyoderma. Int J Dermatol 43:412–414Google Scholar
  115. 115.
    Nakamura H, Takita T, Umezawa H, Kunishima M, Nakayama Y (1974) Letter: absolute configuration of coriolin, a sesquiterpene antibiotic from Coriolus consors. J Antibiot (Tokyo) 27:301–302Google Scholar
  116. 116.
    Nakatani M, Nakamura M, Suzuki A, Inoue M, Katoh T (2002) A new strategy toward the total synthesis of stachyflin, a potent anti-influenza A virus agent: concise route to the tetracyclic core structure. Org Lett 4:4483–4486Google Scholar
  117. 117.
    Namikoshi M, Kobayashi H, Yoshimoto T, Meguro S, Akano K (2000) Isolation and characterization of bioactive metabolites from marine-derived filamentous fungi collected from tropical and sub-tropical coral reefs. Chem Pharm Bull (Tokyo) 48:1452–1457Google Scholar
  118. 118.
    Namikoshi M, Negishi R, Nagai H, Dmitrenok A, Kobayashi H (2003) Three new chlorine containing antibiotics from a marine-derived fungus Aspergillus ostianus collected in Pohnpei. J Antibiot (Tokyo) 56:755–761Google Scholar
  119. 119.
    Ndyomugyenyi R, Magnussen P (2004) Trends in malaria-attributable morbidity and mortality among young children admitted to Ugandan hospitals, for the period 1990–2001. Ann Trop Med Parasitol 98:315–327Google Scholar
  120. 120.
    Neu HC (1992) The crisis in antibiotic resistance. Science 257:1064–1073Google Scholar
  121. 121.
    Nielsen J, Nielsen PH, Frisvad JC (1999) Fungal depside, guisinol, from a marine derived strain of Emericella unguis. Phytochemistry 50:263–265Google Scholar
  122. 122.
    Ohzeki T, Mori K (2001) Synthesis of Corollosporine, an antibacterial metabolite of the marine fungus Corollospora maritima. Biosci Biotechnol Biochem 65:172–175Google Scholar
  123. 123.
    Osterhage C, Kaminsky R, König GM, Wright AD (2000) Ascosalipyrrolidinone A, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae. J Org Chem 65:6412–6417Google Scholar
  124. 124.
    Osterhage C, König GM, Höller U, Wright AD (2002) Rare sesquiterpenes from the algicolous fungus Drechslera dematioidea. J Nat Prod 65:306–313Google Scholar
  125. 125.
    Papagianni M, Mattey M, Kristiansen B (2003) Design of a tubular loop bioreactor for scale-up and scale-down of fermentation processes. Biotechnol Prog 19:1498–1504Google Scholar
  126. 126.
    Piel J, Hertweck C, Shipley PR, Hunt DM, Newman MS, Moore BS (2000) Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate ‘Streptomyces maritimus’: evidence for the derailment of an aromatic polyketide synthase. Chem Biol 7:943–955Google Scholar
  127. 127.
    Pietra F (1997) Secondary metabolites from marine microorganisms: bacteria, protozoa, algae and fungi. Achievements and prospects. Nat Prod Rep 14:453–464Google Scholar
  128. 128.
    Pinheiro R, Belo I, Mota M (2003) Growth and beta-galactosidase activity in cultures of Kluyveromyces marxianus under increased air pressure. Lett Appl Microbiol 37:438–442Google Scholar
  129. 129.
    Pomponi SA (1999) The bioprocess-technological potential of the sea. J Biotech 70:5–13Google Scholar
  130. 130.
    Ramana Murthy MV, Mohan EVS, Sadhukhan AK (1999) Cyclosporin A production by Tolypocladium inflatum using solid state fermentation. Proc Biochem 34:269–280Google Scholar
  131. 131.
    Renner MK, Jensen PR, Fenical W (1998) Neomangicols: structures and absolute stereochemistries of unprecedented halogenated sesterterpenes from a marine fungus of the genus Fusarium. J Org Chem 63:8346–8354Google Scholar
  132. 132.
    Reyburn H, Mbatia R, Drakeley C, Bruce J, Carneiro I, Olomi R, Cox J, Nkya WM, Lemnge M, Greenwood BM, Riley EM (2005) Association of transmission intensity and age with clinical manifestations and case fatality of severe Plasmodium falciparum malaria. JAMA 293:1461–1470Google Scholar
  133. 133.
    Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289Google Scholar
  134. 134.
    Rodgers CA, O’Mahony C (1995) High prevalence of herpes simplex virus type 1 in female anogenital herpes simplex. Int J STD AIDS 6:144Google Scholar
  135. 135.
    Roizman B, Sears AE (1996) In: Fields B, Knipe DM, Howley PM (eds) Fundamental virology. Lippincott-Raven, Philadelphia, pp 1043–1107Google Scholar
  136. 136.
    Rowley DC, Hansen MS, Rhodes D, Sotriffer CA, Ni H, McCammon JA, Bushman FD, Fenical W (2002) Thalassiolins A–C: new marine-derived inhibitors of HIV cDNA integrase. Bioorg Med Chem 10:3619–3625Google Scholar
  137. 137.
    Rowley DC, Kelly S, Kauffman CA, Jensen PR, Fenical W (2003) Halovirs A–E, new antiviral agents from a marine-derived fungus of the genus Scytalidium. Bioorg Med Chem 11:4263–4274Google Scholar
  138. 138.
    Salomon CE, Magarvey NA, Sherman DH (2004) Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21:105–121Google Scholar
  139. 139.
    Schiehser GA, White JD, Matsumoto G, Pezzanite JO, Clardy J (1986) The structure of leptosphaerin. Tetrahedron Lett 27:5587–5590Google Scholar
  140. 140.
    Schmitt EK, Bunse A, Janus D, Hoff B, Friedlin E, Kurnsteiner H, Kuck U (2004) Winged helix transcription factor CPCR1 is involved in regulation of beta-lactam biosynthesis in the fungus Acremonium chrysogenum. Eukaryot Cell 3:121–134Google Scholar
  141. 141.
    Schwartsmann G, Da Rocha AB, Mattei J, Lopes R (2003) Marine-derived anticancer agents in clinical trials. Expert Opin Investig Drugs 12:1367–1383Google Scholar
  142. 142.
    Segeth MP, Bonnefoy A, Bronstrup M, Knauf M, Schummer D, Toti L, Vertesy L, Wetzel-Raynal MC, Wink J, Seibert G (2003) Coniosetin a novel tetrameric antiobiotic from Coniochaeta ellipsoidea DSM 13856. J Antibiot 56:114–122Google Scholar
  143. 143.
    Selbmann L, Crognale S, Petruccioli M (2004) Beta-glucan production by Botryosphaeria rhodina in different bench-top bioreactors. J Appl Microbiol 96:1074–1081Google Scholar
  144. 144.
    Shibazaki M, Taniguchi M, Yokoi T, Nagai K, Watanabe M, Suzuki K, Yamamoto T (2004) YM-215343, a novel antifungal compound from Phoma sp. QN04621. J Antibiot (Tokyo) 57:379–382Google Scholar
  145. 145.
    Shigemori H, Komatsu K, Mikami Y, Kobayashi J (1999) Seragakinone A, a new pentacyclic metabolite from a marine derived fungus. Tetrahedron 55:14925–14930Google Scholar
  146. 146.
    Silber AM, Colli W, Ulrich H, Alves MJ, Pereira CA (2005) Amino acid metabolic routes in Trypanosoma cruzi: possible therapeutic targets against Chagas’ disease. Curr Drug Targets Infect Disord 5:53–64Google Scholar
  147. 147.
    Silvestri L, van Saene HK, Milanese M, Fontana F, Gregori D, Oblach L, Piacente N, Blazic M (2004) Prevention of MRSA pneumonia by oral vancomycin decontamination: a randomised trial. Eur Respir J 23:921–926CrossRefGoogle Scholar
  148. 148.
    Sinha PK, Pandey K, Bhattacharya SK (2005) Diagnosis & management of leishmania/HIV co-infection. Indian J Med Res 121:407–414Google Scholar
  149. 149.
    Son BW, Choi JS, Kim JC, Nam KW, Kim DS, Chung HY, Kang JS, Choi HD (2002) Parasitenone, a new epoxycyclohexenone related to gabosine from the marine-derived fungus Aspergillus parasiticus. J Nat Prod 65:794–795Google Scholar
  150. 150.
    Stachelhaus T, Marahiel MA (1995) Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett 125:3–14Google Scholar
  151. 151.
    Sugie Y, Hirai H, Inagaki T, Ishiguro M, Kim YJ, Kojima Y, Sakakibara T, Sakemi S, Sugiura A, Suzuki Y, Brennan L, Duignan J, Huang LH, Sutcliffe J, Kojima N (2001) A new antibiotic CJ-17,665 from Aspergillus ochraceus. J Antibiot (Tokyo) 54:911–916Google Scholar
  152. 152.
    Tan LT, Cheng XC, Jensen PR, Fenical W (2003) Scytalidamides A and B, new cytotoxic cyclic heptapeptides from a marine fungus of the genus Scytalidium. J Org Chem 68:8767–8773Google Scholar
  153. 153.
    Toske SG, Jensen PR, Kauffman CA, Fenical W (1998) Aspergillamides A and B: modified cytotoxic tripeptides produced by a marine fungus of the genus Aspergillus. Tetrahedron 54:13459–13466Google Scholar
  154. 154.
    Toyomasu T, Nakaminami K, Toshima H, Mie T, Watanabe K, Ito H, Matsui H, Mitsuhashi W, Sassa T, Oikawa H (2004) Cloning of a gene cluster responsible for the biosynthesis of diterpene aphidicolin, a specific inhibitor of DNA polymerase α. Biosci Biotechnol Biochem 68:146–152Google Scholar
  155. 155.
    Tsuda M, Mugishima T, Komatsu K, Sone T, Tanaka M, Mikami Y, Shiro M, Hirai M, Ohizumi Y, Kobayashi J (2003a) Speradine A, a new pentacyclic oxindole alkaloid from a marine derived fungus Aspergillus tamarii. Tetrahedron 59:3227–3230Google Scholar
  156. 156.
    Tsuda M, Mugishima T, Komatsu K, Sone T, Tanaka M, Mikami Y, Kobayashi J (2003b) Modiolides A and B, two new 10-membered macrolides from a marine-derived fungus. J Nat Prod 66:412–415Google Scholar
  157. 157.
    Tziveleka LA, Vagias C, Roussis V (2003) Natural products with anti-HIV activity from marine organisms. Curr Top Med Chem 3:1512–1535Google Scholar
  158. 158.
    Vongvilai P, Isaka M, Kittakoop P, Srikitikulchai P, Kongsaeree P, Thebtaranonth Y (2004) Ketene acetal and spiroacetal constituents of the marine fungus Aigialus parvus BCC 5311. J Nat Prod 67:457–460Google Scholar
  159. 159.
    Walsh CT, Chen H, Keating TA, Hubbard BK, Losey HC, Luo L, Marshall CG, Miller DA, Patel HM (2001) Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr Opin Chem Biol 5:525–534Google Scholar
  160. 160.
    Wang GY, Keasling JD (2002) Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metab Eng 4:193–201Google Scholar
  161. 161.
    Wang GYS, Abrell LM, Avelar A, Borgeson BM (1998) New hirsutane based sesquiterpenes from salt water cultures of a marine sponge-derived fungus and the terrestrial fungus Coriolus consors. Tetrahedron 54:7335Google Scholar
  162. 162.
    Wang GY, Laidlaw RD, Marshall J, Keasling JD (2003) Metabolic engineering of fungal secondary metabolic pathways. In: An ZQ (ed) Handbook of industrial mycology. Marcel Dekker, New York, p 10016Google Scholar
  163. 163.
    Wegner C, Schwibbe M, König GM, Wright AD (2000) HPLC-DAD and HPLC-MS investigations of marine and terrestrial Phoma species. Phytochem Anal 11:288–294Google Scholar
  164. 164.
    Williams RJ, Heymann DL (1998) Containment of antibiotic resistance. Science 279:115–154Google Scholar
  165. 165.
    Winston JE (1988) The systematists’ perspective. In: Fautin DG (ed) Biomedical importance of marine organisms. California Academy of Science, San Francisco, pp 1–6Google Scholar
  166. 166.
    Yagi S, Ono J, Yoshimoto J, Sugita K, Hattori N, Fujioka T, Fujiwara T, Sugimoto H, Hirano K, Hashimoto N (1999) Development of anti-influenza virus drugs I: improvement of oral absorption and in vivo anti-influenza activity of Stachyflin and its derivatives. Pharm Res 16:1041–1046Google Scholar
  167. 167.
    Yanai K, Sumida N, Okakura K, Moriya T, Watanabe M, Murakami T (2004) Para-position derivatives of fungal anthelmintic cyclodepsipeptides engineered with Streptomyces venezuelae antibiotic biosynthetic genes. Nat Biotechnol 22:848–855Google Scholar
  168. 168.
    Zilinskas RA, Colwell RR, Lipton DW, Hill RT (1995) The global challenge of marine biotechnology: a status report on the United States, Japan, Australia and Norway College Park: Maryland Sea Grant, p 372Google Scholar

Copyright information

© Society for Industrial Microbiology 2006

Authors and Affiliations

  • Punyasloke Bhadury
    • 1
  • Balsam T. Mohammad
    • 2
  • Phillip C. Wright
    • 3
  1. 1.Plymouth Marine LaboratoryPlymouthUK
  2. 2.Chemical Engineering LaboratoryUniversity of A CorunaCorunaSpain
  3. 3.Biological and Environmental Systems Group, Department of Chemical and Process EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations