Advertisement

Disruption of the copper efflux pump (CopA) of Serratia marcescens ATCC 274 pleiotropically affects copper sensitivity and production of the tripyrrole secondary metabolite, prodigiosin

  • N. R. Williamson
  • H. T. Simonsen
  • A. K. P. Harris
  • F. J. Leeper
  • George P. C. Salmond
Original Paper - JMBM

Abstract

The prodigiosin biosynthetic gene cluster (pig cluster) of Serratia marcescens ATCC 274 (Sma 274) is flanked by cueR/copA homologues. Inactivation of the copA homologue resulted in an increased sensitivity to copper, confirming that CopA is involved in copper homeostasis in Sma 274. The effect of copper on the biosynthesis of prodigiosin in Sma 274 and the copA mutant strain was investigated. Increased levels of copper were found to reduce prodigiosin production in the wild type Sma 274, but increase production in the copA mutant strain. The physiological implications for CopA mediated prodigiosin production are discussed. We also demonstrate that the gene products of pigB–pigE of Sma 274 are sufficient for the biosynthesis of 2-methyl-3-n-amyl-pyrrole and condensation with 4-methoxy-2,2′-bipyrrole-5-carboxyaldehyde to form prodigiosin, as we have shown for Serratia sp. ATCC 39006.

Keywords

Antibiotic Biosynthesis Regulation Secondary metabolite 

Notes

Acknowledgements

We thank Martin Welch and members of the Salmond group for helpful discussions. We would also like to thank Ian Foulds for his excellent technical assistance. This study was supported generously by the BBSRC, UK. AKPH was supported by a BBSRC studentship.

References

  1. 1.
    Azambuja P, Feder D, Garcia ES (2004) Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol 107:89–96CrossRefPubMedGoogle Scholar
  2. 2.
    Bu’Lock JD (1961) Intermediary metabolism and antibiotic synthesis. Annu Rev Microbiol 3:293–342Google Scholar
  3. 3.
    Cerdeño AM, Bibb MJ, Challis GL (2001) Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular multienzymes. Chem Biol 8:817–829CrossRefPubMedGoogle Scholar
  4. 4.
    Chang ACY, Cohen SN (1978) Construction and characterisation of an amplifiable multicopy DNA cloning vehicle derived from the p15A cryptic miniplasmid. J Bacteriol 134:1141–1156PubMedGoogle Scholar
  5. 5.
    D’Alessio R, Bargiotti A, Carlini O, Colotta F, Ferrari M, Gnocchi P, Isetta A, Mongelli N, Motta P, Rossi A, Rossi M, Tibolla M, Vanotti E (2000) Synthesis and immunosuppressive activity of novel prodigiosin derivatives. J Med Chem 43:2557–2565CrossRefPubMedGoogle Scholar
  6. 6.
    Demain AL (1995) Why do microorganisms produce antimicrobials? In: Hunter PA, Darby GK, Russell NJ (eds) Fifty years of antimicrobials: past perspectives and future trends. Society for General Microbiology Symposium 53, Cambridge, pp 205–228Google Scholar
  7. 7.
    Grass G, Rensing C (2001) Genes involved in copper homeostasis in Escherichia coli. J Bacteriol 183:2145–2147CrossRefPubMedGoogle Scholar
  8. 8.
    Grimont PAD, Grimont F (1978) The genus Serratia. Annu Rev Microbiol 32:221–248CrossRefPubMedGoogle Scholar
  9. 9.
    Grinter NJ (1983) A broad-host-range cloning vector transposable to various replicons. Gene 21:133–143CrossRefPubMedGoogle Scholar
  10. 10.
    Harris AK, (2003) Analysis of quorum sensing and prodigiosin biosynthetic genes in Serratia marcescens. PhD thesis, Department of Biochemistry, University of CambridgeGoogle Scholar
  11. 11.
    Harris AK, Williamson NR, Slater H, Cox A, Abbasi S, Foulds I, Simonsen HT, Leeper FJ, Salmond GP (2004) The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiol 150:3547–60CrossRefGoogle Scholar
  12. 12.
    Herrero M, De lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J Bacteriol 172:6557–6567PubMedGoogle Scholar
  13. 13.
    Hood DW, Heidstra R, Swoboda UK, Hodgson DA (1992) Molecular genetic analysis of proline and tryptophan biosynthesis in Streptomyces coelicolor A3(2): interaction between primary and secondary metabolism—a review. Gene 115:5–12CrossRefPubMedGoogle Scholar
  14. 14.
    Kaniga K, Delor I, Cornelis GR (1991) A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene 109:137–141CrossRefPubMedGoogle Scholar
  15. 15.
    Llagostera E, Soto-Cerrato V, Joshi R, Montaner B, Gimenez-Bonafe P, Pérez-Tomás R (2005) High cytotoxic sensitivity of the human small cell lung doxorubicin-resistant carcinoma (GLC4/ADR) cell line to prodigiosin through apoptosis activation. Anticancer Drugs 16:393–399CrossRefPubMedGoogle Scholar
  16. 16.
    Lowe JA, Chan YM, Tsang JC (1987) Investigation of biosynthesis of prodigiosin and its condensing enzyme in Serratia marcescens. 2. Effects of various transition metal ions. Microbios 51:71–80Google Scholar
  17. 17.
    Montaner B, Navarro S, Pique M, Vilaseca M, Martinell M, Giralt E, Gil J, Perez-Tomas R (2000) Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines. Br J Pharmacol 131:585–593PubMedCrossRefGoogle Scholar
  18. 18.
    Montaner B, Pérez-Tomás R (2003) The prodigiosins: a new family of anticancer drugs. Curr Cancer Drug Targets 3:57–65CrossRefPubMedGoogle Scholar
  19. 19.
    Morrison DA (1966) Prodigiosin synthesis in mutants of Serratia marcesens. J Bacteriol 91:1599–1604PubMedGoogle Scholar
  20. 20.
    Mortellaro A, Songia S, Gnocchi P, Ferrari M, Fornasiero C, D’Alessio R, Isetta A, Colotta F, Golay J (1999) New immunosuppressive drug PNU156804 blocks IL-2-dependent proliferation and NF-kappa B and AP-1 activation. J Immunol 162:7102–7109PubMedGoogle Scholar
  21. 21.
    Outten FW, Huffman DL, Hale JA, O’Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677CrossRefPubMedGoogle Scholar
  22. 22.
    Park G, Tomlinson JT, Melvin MS, Wright MW, Day CS, Manderville RA (2003) Zinc and copper complexes of prodigiosin: implications for copper-mediated double-strand DNA cleavage. Org Lett 5:113–116CrossRefPubMedGoogle Scholar
  23. 23.
    Petersen C, Møller LB (2000) Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene 261:289–298CrossRefPubMedGoogle Scholar
  24. 24.
    Regue M, Fabregat C, Vinas M (1991) A generalized transducing bacteriophage for Serratia marcescens. Res Microbiol 142:23–27CrossRefPubMedGoogle Scholar
  25. 25.
    Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97:652–6CrossRefPubMedGoogle Scholar
  26. 26.
    Rensing C, Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213CrossRefPubMedGoogle Scholar
  27. 27.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbour Laboratory Press, New YorkGoogle Scholar
  28. 28.
    Slater H, Crow M, Everson L, Salmond GP (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol 47:303–320CrossRefPubMedGoogle Scholar
  29. 29.
    Stoyanov JV, Hobman JL, Brown NL (2001) CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–511CrossRefPubMedGoogle Scholar
  30. 30.
    Tsao SW, Rudd BA, He XG, Chang CJ, Floss HG (1985) Identification of a red pigment from Streptomyces coelicolor A3(2) as a mixture of prodigiosin derivatives. J Antibiot 38:128–31PubMedGoogle Scholar
  31. 31.
    Tsuji RF, Magae J, Yamashita M, Nagai K, Yamasaki M (1992) Immunomodulating properties of prodigiosin 25-C, an antibiotic which preferentially suppresses induction of cytotoxic T cells. J Antibiot 45:1295–1302PubMedGoogle Scholar
  32. 32.
    Tsuji RF, Yamamoto M, Nakamura A, Kataoka T, Magae J, Nagai K, Yamasaki M (1990) Selective immunosuppression of prodigiosin 25-C and FK506 in the murine immune system. J Antibiot 43:1293–1301PubMedGoogle Scholar
  33. 33.
    Williams RP, Gott CL, Qadri SM, Scott RH (1971) Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens. J Bacteriol 106:438–443PubMedGoogle Scholar
  34. 34.
    Williams RP, Quadri SM (1980) The pigments of Serratia. In: Von Graevenitz A, Rubin SJ (eds) The genus Serratia. CRC Press Inc., Boca Raton, pp 31–75Google Scholar
  35. 35.
    Williamson NR, Simonsen HT, Ahmed RAA, Goldet G, Slater H, Woodley L, Leeper FJ, Salmond GPC (2005) Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol 56:971–989CrossRefPubMedGoogle Scholar
  36. 36.
    Yamamoto K, Ishihama A (2005) Transcriptional response of Escherichia coli to external copper. Mol Microbiol 56:215–227CrossRefPubMedGoogle Scholar
  37. 37.
    Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 Phage Cloning Vectors and Host Strains: Nucleotide Sequences Of the M13 mp18 and Puc19 Vectors. Gene 33:103–119PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2005

Authors and Affiliations

  • N. R. Williamson
    • 1
  • H. T. Simonsen
    • 2
  • A. K. P. Harris
    • 1
  • F. J. Leeper
    • 2
  • George P. C. Salmond
    • 1
  1. 1.Department of BiochemistryUniversity of CambridgeCambridgeUK
  2. 2.Department of ChemistryUniversity of CambridgeCambridgeUK

Personalised recommendations