The application of multi-parameter flow cytometry to the study of recombinant Escherichia coli batch fermentation processes

  • Gareth Lewis
  • Ian W. Taylor
  • Alvin W. Nienow
  • Christopher J. Hewitt
Original Paper


Multi-parameter flow cytometric techniques coupled with dual colour fluorescent staining were used to study the physical and metabolic consequences of inclusion body formation in batch cultures of the recombinant Escherichia coli strain MSD3735. This strain contains a plasmid coding for the isopropylthiogalactopyranoside-inducible model eukaryotic protein AP50. It is known that the synthesis of foreign proteins at high concentrations can exert a severe metabolic stress on the host cell and that morphological changes can occur. In this work, using various points of induction, it was shown that inclusion body formation is followed immediately by measurable changes in the characteristic intrinsic light scatter patterns for the individual cell (forward scatter, 90° side scatter) and a concomitant progressive change in the individual cell physiological state with respect to both cytoplasmic membrane polarisation and permeability. This work establishes flow cytometry as a potentially valuable tool for monitoring recombinant fermentation processes, providing important information for scale-up. Further, we discuss the possibility of optimising inclusion body formation by manipulating the fermentation conditions based on these rapid “real-time” measurements.


Flow cytometry Escherichia coli Fermentation Membrane integrity Membrane potential Inclusion bodies 


  1. 1.
    Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421CrossRefPubMedGoogle Scholar
  2. 2.
    Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala D (1990) Plasmid encoded protein: the principle factor in the ‘metabolic burden’ associated with recombinant bacteria. Biotechnol Bioeng 35:668–661Google Scholar
  3. 3.
    Borth N, Mitterbauer R, Mattanovich D, Kramer W, Bayer K, Katinger H (1998) Flow cytometric analysis of bacterial physiology during induction of foreign protein synthesis in recombinant Escherichia coli cells. Cytometry 31:125–129CrossRefPubMedGoogle Scholar
  4. 4.
    Brinkman U, Mattes RE, Buckel P (1989) High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene 85:109–114CrossRefPubMedGoogle Scholar
  5. 5.
    Bylund F, Collet E, Enfors SO, Larsson G (1998) Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation. Bioprocess Eng 18:171–180CrossRefGoogle Scholar
  6. 6.
    Einsele A (1978) Scaling-up of bioreactors. Proc Biochem 13:13–14Google Scholar
  7. 7.
    Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jurgen B, Kruger E, Schweder T, Hamer G, O’Beirne D, Noisommit-Rizzi N, Reuss M, Boon L, Hewitt C, McFarlane C, Nienow A, Fuchs L, Kovacs T, Revstedt J, Tragardh C, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin HY, Neubauer P, Lans R van der, Luyben K, Vrabel P, Manelius A (2001) Physiological responses to mixing in large-scale bioreactors. J Biotechnol 85:175–185CrossRefPubMedGoogle Scholar
  8. 8.
    Follows ER, McPheat JC, Minshull C, Moore NC, Pauptit RA, Rowsell S, Stacey CL, Stanway JJ, Taylor IWF, Abbott WM (2001) Study of the interaction of the medium chain μ2 subunit of the clathrin associated adaptor protein complex 2 with cytotoxic T-lyphocyte antigen 4 and CD28. Biochem J 359:427–434CrossRefPubMedGoogle Scholar
  9. 9.
    Fouchet P, Manin C, Richard H, Frelat G, Barbotin JN (1994) Flow cytometry studies of recombinant Escherichia coli in batch and continuous cultures: DNA and RNA contents; light-scatter parameters. Appl Microbiol Biotechnol 41:584–590PubMedGoogle Scholar
  10. 10.
    Hewitt CJ, Nebe-von-Caron G, Nienow AW, McFarlane CM (1999a) The use of multi-staining flow cytometry to characterise the physiological state of Escherichia coli W3110 in high cell density fed-batch cultures. Biotechnol Bioeng 63:705–711CrossRefPubMedGoogle Scholar
  11. 11.
    Hewitt CJ, Nebe-von-Caron G, Nienow AW, McFarlane CM (1999b) The use of multi-parameter flow cytometry to compare the physiological response of Escherichia coli W3110 to glucose limitation during batch, fed-batch and continuous culture cultivations. J Biotechnol 75:251–264CrossRefPubMedGoogle Scholar
  12. 12.
    Hewitt CJ, Nebe-von-Caron G, Axelsson B, McFarlane CM, Nienow AW (2000) Studies related to the scale-up of high cell density E. coli fed-batch fermentations using multi-parameter flow cytometry: effect of a changing micro-environment with respect to glucose and dissolved oxygen concentration. Biotechnol Bioeng 70:381–390CrossRefPubMedGoogle Scholar
  13. 13.
    Hewitt CJ, Nebe-von-Caron G (2001) An industrial application of multi-parameter flow cytometry: assessment of cell physiological state and its application to the study of microbial fermentations. Cytometry 44:179–187CrossRefPubMedGoogle Scholar
  14. 14.
    Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685PubMedGoogle Scholar
  15. 15.
    Lavergne-Mazeau F, Maftah A, Centatiempo Y, Julien R (1996) Linear correlation between bacterial overexpression of recombinant peptides and light scatter. Appl Environ Microbiol 62:3042–3046PubMedGoogle Scholar
  16. 16.
    Nebe-von-Caron G, Badley RA (1995) Viability assessment of bacteria in mixed populations using flow-cytometry. J Microsc (Oxford) 179:55–66Google Scholar
  17. 17.
    Nebe-von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA (2000) Analysis of bacterial function by multi-colour and single cell sorting. J Microsc Methods 42:97–114CrossRefGoogle Scholar
  18. 18.
    Nienow AW (1998) Hydrodynamics of stirred bioreactors. Appl Mech Rev 51:3–32Google Scholar
  19. 19.
    Onyeaka H, Nienow AW, Hewitt CJ (2003) Further studies related to the scale-up of high cell density Escherichia coli fed-batch fermentations: the additional effect of a changing micro-environment when using aqueous ammonia to control pH. Biotechnol Bioeng 84:474–484CrossRefPubMedGoogle Scholar
  20. 20.
    Oosterhuis NMG, Kossen NWF (1984) Dissolved oxygen concentration profiles in a production scale bioreactor. Biotechnol Bioeng 26:546–550Google Scholar
  21. 21.
    Schweder T, Krüger E, Xu B, Jürgen B, Mostertz J, Blomsten G, Enfors SO, Hecker M (1999) Monitoring of genes that respond to process related stress in large-scale bioprocesses. Biotechnol Bioeng 65:151–159CrossRefPubMedGoogle Scholar
  22. 22.
    Wittrup KD, Mann MB, Fenton DM, Tsai LB, Bailey JE (1988) Single-cell light scatter as a probe of refractile body formation in recombinant Escherichia coli. Bio/Technology 6:423–426Google Scholar
  23. 23.
    Xu B, Jahic M, Blomsten G, Enfors SO (1999) Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli. Appl Microbiol Biotechnol 51:564–571CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2004

Authors and Affiliations

  • Gareth Lewis
    • 1
  • Ian W. Taylor
    • 2
  • Alvin W. Nienow
    • 1
  • Christopher J. Hewitt
    • 1
  1. 1.School of Engineering (Chemical Engineering)The University of BirminghamEdgbastonUK
  2. 2.AstraZenecaMacclesfieldUK

Personalised recommendations