Hemicellulose bioconversion

  • Badal C. SahaEmail author
Review Paper


Various agricultural residues, such as corn fiber, corn stover, wheat straw, rice straw, and sugarcane bagasse, contain about 20–40% hemicellulose, the second most abundant polysaccharide in nature. The conversion of hemicellulose to fuels and chemicals is problematic. In this paper, various pretreatment options as well as enzymatic saccharification of lignocellulosic biomass to fermentable sugars is reviewed. Our research dealing with the pretreatment and enzymatic saccharification of corn fiber and development of novel and improved enzymes such as endo-xylanase, β-xylosidase, and α-l-arabinofuranosidase for hemicellulose bioconversion is described. The barriers, progress, and prospects of developing an environmentally benign bioprocess for large-scale conversion of hemicellulose to fuel ethanol, xylitol, 2,3-butanediol, and other value-added fermentation products are highlighted.


Hemicellulose Arabinoxylan Bioconversion Hemicellulase Xylanolytic enzymes 


  1. 1.
    Aspinall GO (1980) Chemistry of cell wall polysaccharides. In: Preiss J (ed) The biochemistry of plants (a comprehensive treatise), vol 3. Carbohydrates: structure and function. Academic Press, New York, pp 473–500Google Scholar
  2. 2.
    Bachmann SL, McCarthy AJ (1991) Purification and cooperative activity of enzymes constituting the xylan-degrading system of Thermomonospora fusca. Appl Environ Microbiol 57:2121–2130Google Scholar
  3. 3.
    Bjerre AB, Olesen AB, Fernqvist T, Ploger A, Schmidt AS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Bioresour Technol 49:568–577CrossRefGoogle Scholar
  4. 4.
    Bothast RJ, Saha BC (1997) Ethanol production from agricultural biomass substrates. Adv Appl Microbiol 44:261–286Google Scholar
  5. 5.
    Bothast RJ, Saha BC, Flosenzier AV, Ingram LO (1994) Fermentation ofl-arabinose, d-xylose and d-glucose by ethanologenic Escherichia coli. Biotechnol Lett 16:401–406Google Scholar
  6. 6.
    Bothast RJ, Nichols NN, Dien BS (1999) Fermentation with new recombinant organisms. Biotechnol Prog 15:867–875CrossRefPubMedGoogle Scholar
  7. 7.
    Brownell HH, Saddler JN (1984) Steam explosion pretreatment for enzymatic hydrolysis. Biotechnol Bioeng Symp 14:55–68Google Scholar
  8. 8.
    Bungay H (1992) Product opportunities for biomass refining. Enzyme Microb Technol 14:501–507CrossRefGoogle Scholar
  9. 9.
    Cao NJ, Krishnan MS, Du JX, Gong CS, Ho NWY, Chen ZD, Tsao GT (1996) Ethanol production from corn cob pretreated by the ammonia steeping process using genetically engineered yeast. Biotechnol Lett 18:1013–1018Google Scholar
  10. 10.
    Carvalho W, Silva SS, Converti A, Vitolo M (2002) Metabolic behavior of immobilized Candida guilliermondi cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnol Bioeng 79:165–169CrossRefPubMedGoogle Scholar
  11. 11.
    Chen LF, Gong CS (1985) Fermentation of sugarcane bagasse hemicellulose hydrolyzate to xylitol by a hydrolyzate-acclimatized yeast. J Food Sci 50:226–228Google Scholar
  12. 12.
    Chiang C, Knight SG (1960) Xylose metabolism by cell-free extract of Penicillium chrysosporium. Nature 188:79–81Google Scholar
  13. 13.
    Choi JH, Moon KH, Ryu YW, Seo JH (2000) Production of xylitol in cell recycle fermentations of Candida tropicalis. Biotechnol Lett 22:1625–1628CrossRefGoogle Scholar
  14. 14.
    Christov LP, Myburgh J, van Tonder A, Prior BA (1997) Hydrolysis of extracted and fiber-bound xylan with Aureobasidium pullulans enzymes. J Biotechnol 55:21–29CrossRefGoogle Scholar
  15. 15.
    Chum HL, Johnsoon DK, Black S (1988) Organosolv pretreatment for enzymatic hydrolysis of poplars: 1, enzyme hydrolysis of cellulosic residues. Biotechnol Bioeng 31: 643–649Google Scholar
  16. 16.
    Chung YS, Kim MD, Lee WJ, Ryu YW, Kim JH, Seo JH (2002) Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 30:809–816CrossRefGoogle Scholar
  17. 17.
    Clark DP, Mackie KL (1987) Steam explosion of the softwood Pinus radiata with sulphur dioxide addition. 1. Process optimization. J Wood Chem Technol 7:373–403Google Scholar
  18. 18.
    Converti A, Perego P, Dominguez JM (1999) Xylitol production from hardwood hemicellulose hydrolyzates by Pachysolen tannophilus, Debaryomyces hansenii, and Candida guillermondii. Appl Biochem Biotechnol 82:141–151Google Scholar
  19. 19.
    Coughlan MP, Hazlewood GP (1993) β-1,4-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17:259–289PubMedGoogle Scholar
  20. 20.
    Cruz JM, Dominquez JM, Parajo JC (2000) Xylitol production from barley bran hydrolyzates by continuous fermentation with Debaryomyces hansenii. Biotechnol Lett 22:1895–1898CrossRefGoogle Scholar
  21. 21.
    Dale BE, Moreira MJ (1982) A freeze-explosion technique for increasing cellulose hydrolysis. Biotechnol Bioeng Symp 12:31–43Google Scholar
  22. 22.
    Dale BE, Leong CK, Pham TK, Esquivel VM, Rios L, Latimer VM (1996) Hydrolysis at low enzyme levels: application of the AFEX process. Bioresour Technol 56:111–116CrossRefGoogle Scholar
  23. 23.
    Deng XX, Ho NWY (1990) Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Appl Biochem Biotechnol 24/25:193–199Google Scholar
  24. 24.
    Dien BS, Kurtzman CP, Saha BC, Bothast RJ (1996) Screening forl-arabinose fermenting yeasts. Appl Biochem Biotechnol 57/58:233–242Google Scholar
  25. 25.
    Dien BS, Hespell RB, Ingram LO, Bothast RJ (1997) Conversion of corn milling fibrous coproducts into ethanol by recombinant Escherichia coli strains K011 and SL 40. World J Microbiol Biotechnol 13:619–625Google Scholar
  26. 26.
    Dien BS, Iten LB, Bothast RJ (1999) Conversion of corn fiber to ethanol by recombinant E. coli. J Ind Microbiol Biotechnol 22:575–581CrossRefPubMedGoogle Scholar
  27. 27.
    Dien BS, Nichols NN, O'Bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84–86:181–196Google Scholar
  28. 28.
    Dien BS, Nichols NN, Bothast RJ (2001) Recombinant Escherichia coli engineered for production of l-lactic acid from hexose and pentose sugars. J Ind Microbiol Biotechnol 27:259–264CrossRefPubMedGoogle Scholar
  29. 29.
    Dien BS, Nichols NN, Bothast RJ (2002) Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of l-lactic acid. J Ind Microbiol Biotechnol 29:221–227PubMedGoogle Scholar
  30. 30.
    Dominguez JM, Gong CS, Tsao GT (1996) Pretreatment of sugar cane bagasse hemicellulose hydrolyzate for xylitol production by yeast. Appl Biochem Biotechnol 57/58:49–56Google Scholar
  31. 31.
    Doner LW, Hicks KB (1997) Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction. Cereal Chem 74:176–181Google Scholar
  32. 32.
    Draude KM, Kurniawan CB, Duff SJB (2001) Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresour Technol 79:113–120CrossRefPubMedGoogle Scholar
  33. 33.
    Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33CrossRefGoogle Scholar
  34. 34.
    Du Preez JC (1994) Process parameters and environmental factors affectingd-xylose fermentation by yeasts. Enzyme Microb Technol 16:944–956CrossRefGoogle Scholar
  35. 35.
    Eda S, Ohnishi A, Kato K (1976) Xylan isolated from the stalk of Nicotiana tabacum. Agric Biol Chem 40:359–364Google Scholar
  36. 36.
    Eklund R, Zacchi G (1995) Simultaneous saccharification and fermentation of steam-pretreated willow. Enzyme Microb Technol 17:255–259CrossRefGoogle Scholar
  37. 37.
    Eliasson A, Christensson C, Wahborn CF, Hahn-Hagerdahl B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae harbouring XYL1, XYL2 and XKS1 in mineral media chemostat cultivations. Appl Environ Microbiol 66:3381–3386PubMedGoogle Scholar
  38. 38.
    Faulds CB, Bartolome B, Williamson G (1997) Novel biotransformations of agro-industrial cereal waste by ferulic acid esterases. Ind Crops Prod 6:367–374CrossRefGoogle Scholar
  39. 39.
    Faveri DD, Perego P, Converti A, Borghi M. (2002) Xylitol recovery by crystallization from synthetic solutions and fermented hemicellulose hydrolyzates. Chem Eng J 90:291–298CrossRefGoogle Scholar
  40. 40.
    Fernandez-Bolanos J, Felizon B, Heredia A, Rodriguez R, Guillen R, Jimenez A (2001) Steam-explosion of olive stones: hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresour Technol 79:53–61CrossRefPubMedGoogle Scholar
  41. 41.
    Filho EXF, Touhy MG, Pulls J, Coughlan MP (1991) The xylan-degrading enzyme systems of Penicillium capsulatum and Talaromyces emersonii. Biochem Soc Trans 19:25SPubMedGoogle Scholar
  42. 42.
    Garg SK, Jain A (1995) Fermentative production of 2,3-butanediol. Bioresour Technol 51:103–109CrossRefGoogle Scholar
  43. 43.
    Garrote G, Dominguez H, Parajo JC (2001) Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis-posthydrolysis processes: posthydrolysis kinetics. Bioresour Technol 79:155–164CrossRefPubMedGoogle Scholar
  44. 44.
    Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194Google Scholar
  45. 45.
    Goldstein IS, Easter JM (1992) An improved process for converting cellulose to ethanol. Tappi 75:135–140Google Scholar
  46. 46.
    Gong CS, Chen LF, Flickinger MC, Chiang LC, Tsao GT (1981) Production of ethanol fromd-xylose by using d-xylose isomerase and yeasts. Appl Environ Microbiol 41:430–436Google Scholar
  47. 47.
    Gong CS, Cao N, Tsao GT (1997) Biological production of 2,3-butanediol from renewable biomass. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, D.C., pp 280–293Google Scholar
  48. 48.
    Gould JM (1984) Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol Bioeng 26:46–52Google Scholar
  49. 49.
    Govinden R, Pillay B, van Zyl WH, Pillay D (2001) Xylitol production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehate XYL1 genes. Appl Microbiol Biotechnol 55:76–80CrossRefPubMedGoogle Scholar
  50. 50.
    Granstorm T, Ojama H, Leisola M (2001) Chemostat study of xylitol production by Candida guilliermondii. Appl Microbiol Biotechnol 55:36–42PubMedGoogle Scholar
  51. 51.
    Gruppen H, Hamer RJ, Voragen AGJ (1992) Water-unextractable cell wall material from wheat flour. 2. Fractionation of alkali-extracted polymers and comparison with water-extractable arabinoxylans. J Cereal Sci 16:53–67Google Scholar
  52. 52.
    Gurgel PV, Manchilha IM, Pecanha RP, Siqueira JFM (1995) Xylitol recovery from fermented sugarcane bagasse hydrolyzate. Bioresour Technol 52:219–223CrossRefGoogle Scholar
  53. 53.
    Hahn-Hagerdal B, Berner S, Skoog K (1986) Improved ethanol production from xylose with glucose isomerase and Saccharomyces cerevisiae using respiratory inhibitor azide. Appl Microbiol Biotechnol 24:287–293Google Scholar
  54. 54.
    Hahn-Hagerdal B, Jeppsson H, Skoog K, Prior BA (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb Technol 16:933–943CrossRefGoogle Scholar
  55. 55.
    Hahn-Hagerdal B, Wahlborm CF, Gardonyi M, van Zyl WH, Cordero Otero RR, Jonsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84PubMedGoogle Scholar
  56. 56.
    Hallborn J, Walfridsson M, Airaksine U, Ojamo H, Hahn-Hagerdal B (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9:1090–1095PubMedGoogle Scholar
  57. 57.
    Hallborn J, Gorwa MF, Meinander N, Penttila M, Keranen S, Hahn-Hagerdal B (1994) The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene. Appl Microbiol Biotechnol 42:326–333PubMedGoogle Scholar
  58. 58.
    Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1856PubMedGoogle Scholar
  59. 59.
    Hofer M, Betz A, Kotyk A (1971) Metabolism of the obligatory aerobic yeast Rhodotorula gracilis. IV. Induction of an enzyme necessary for d-xylose catabolism. Biochim Biophys Acta 252:1–12PubMedGoogle Scholar
  60. 60.
    Hood EE, Hood KR, Fritz SE (1991) Hydroxyproline-rich glycoproteins in cell walls of pericarp from maize. Plant Sci 79:13–22CrossRefGoogle Scholar
  61. 61.
    Ingram LO, Alterhum F, Ohta K, Beall DS (1990) Genetic engineering of Escherichia coli and other enterobacteria for ethanol production. In: Pierce GE (ed), Developments in Industrial Microbiology, vol 31. pp 21–30Google Scholar
  62. 62.
    Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866Google Scholar
  63. 63.
    Jansen NB, Flickinger MC, Tsao GT (1984) Production of 2,3-butanediol from xylose by Klebsiella oxytoca ATCC 8724. Biotechnol Bioeng 26:362–368Google Scholar
  64. 64.
    Kaar WE, Holtzaple MT (2000) Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioenergy 18:189–199CrossRefGoogle Scholar
  65. 65.
    Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77:139–144CrossRefPubMedGoogle Scholar
  66. 66.
    Kim SY, Oh DK, Kim JH (1999) Evaluation of xylitol production from corn cob hemicellulose hydrolyzate by Candida parapsilosis. Biotechnol Lett 21:891–895CrossRefGoogle Scholar
  67. 67.
    Klinke HB, Ahring BK, Schmidt AS, Thomson AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82:15–26CrossRefPubMedGoogle Scholar
  68. 68.
    Kormelink FJM, Voragen AG (1993) Degradation of different [(glucurono)arabino]xylans by a combination of purified xylan-degrading enzymes. Appl Microbiol Biotechnol 38:688–695Google Scholar
  69. 69.
    Kosaric N, Velikonja J (1995) Liquid and gaseous fuels from biotechnology: challenges and opportunities. FEMS Microbiol Rev 16:111–142CrossRefGoogle Scholar
  70. 70.
    Kosaric N, Magee RJ, Blaszczyk R (1992) Redox potential measurement for monitoring glucose and xylose conversion by K. pneumoniae. Chem Biochem Eng Q 6:145–152Google Scholar
  71. 71.
    Koullas DP, Christakopoulos PE, Kekos D, Koukios EG, Macris BJ (1993) Effect of alkali delignification on wheat straw saccharification by Fusarium oxysporum cellulases. Biomass Bioenergy 4:9–13Google Scholar
  72. 72.
    Kurakake M, Kisaka W, Ouchi K, Komaki T (2001) Pretreatment with ammonia water for enzymatic hydrolysis of corn husk, bagasse, and switchgrass. Appl Biochem Biotechnol 90:251–259PubMedGoogle Scholar
  73. 73.
    Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44CrossRefPubMedGoogle Scholar
  74. 74.
    Leathers TD, Dien BS (2000) Xylitol production from corn fiber hydrolyzate by a two-stage fermentation process. Process Biochem 35:765–769CrossRefPubMedGoogle Scholar
  75. 75.
    Leathers TD, Gupta SC (1997) Saccharification of corn fiber using enzymes from Aureobasidium sp. strain NRRL Y-2311-1. Appl Biochem Biotechnol 59:337–347Google Scholar
  76. 76.
    Lee SF, Forsberg CW (1987) Purification and characterization of an α-l-arabinofuranosidase from Clostridium acetobutylicum ATCC 824. Can J Microbiol 33:1011–1016Google Scholar
  77. 77.
    Lee WJ, Ryu YW, Seo JH (2000) Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase. Process Biochem 35:1199–1203CrossRefPubMedGoogle Scholar
  78. 78.
    Lesage-Meessen L, Delattre M, Haon M, Thibault JF, Colonna Ceccaldi B, Brunerie P, Asther M (1996) Two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J Biotechnol 50:107–113CrossRefPubMedGoogle Scholar
  79. 79.
    Maddox IS (1996) Microbial production of 2,3-butanediol. In: Roehr M (ed) Biotechnology, vol 6. Products of primary metabolism. VCH, Weinheim, pp 269–291Google Scholar
  80. 80.
    Magee RJ, Kosaric N (1987) The microbial production of 2,3-butanediol. Adv Appl Microbiol 32:89–161Google Scholar
  81. 81.
    Malaja A, Hamalainen L (1977) Process for making xylitol. US Patent 4,008,285Google Scholar
  82. 82.
    Martinez A, York SW, Yomano LP, Pineda VL, Davis FC, Shelton JC, Ingram LO (1999) Biosynthetic burden and plasmid limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli. Biotechnol Prog 15:891–897CrossRefPubMedGoogle Scholar
  83. 83.
    Mayerhoff ZDVL, Roberto IC, Silva SS (1997) Xylitol production from rice straw hemicellulose hydrolyzate using different yeast strains. Biotechnol Lett 5:407–409CrossRefGoogle Scholar
  84. 84.
    McMillan JD (1993) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuel production. American Chemical Society, Washington, D.C., pp 292–323Google Scholar
  85. 85.
    Meinander N, Hahn-Hagerdal B, Linko M, Linko P, Ojamo H (1994) Fed-batch xylitol production with recombinant XYL-1-expressing Saccharomyces cerevisiae using ethanol as a co-substrate. Appl Microbiol Biotechnol 42:334–339CrossRefGoogle Scholar
  86. 86.
    Moniruzzaman M, Dien BS, Skory CD, Chen ZD, Hespell RB, Ho NWY, Dale BE, Bothast RJ (1997) Fermentation of corn fiber sugars by an engineered xylose utilizing Saccharomyces yeast strain. World J Microbiol Biotechnol 13:341–346Google Scholar
  87. 87.
    Morjanoff PJ, Gray PP (1987) Optimization of steam explosion as method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification. Biotechnol Bioeng 29:733–741Google Scholar
  88. 88.
    Mueller-Hartley I, Hartley RD, Harris PJ, Curzon EH (1986) Linkage of p-coumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr Res 148:71–85CrossRefGoogle Scholar
  89. 89.
    Nichols NN, Dien BS, Bothast RJ (2001) Use of catabolic repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol 56:120–125CrossRefPubMedGoogle Scholar
  90. 90.
    Nidetzky B, Neukauser W, Haltrich D, Kulbe KD (1996) Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnol Bioeng 52:387–396CrossRefGoogle Scholar
  91. 91.
    Nissen AM, Anker L, Munk N, Lange NK (1992) Xylanases for the pulp and paper industry. In: Visser J, Beldman G, Kusters-Van Someren MA, Voragen AGJ (eds) Xylans and xylanases. Elsevier, Amsterdam, pp 325–337Google Scholar
  92. 92.
    Nolleau V, Preziosi-Belloy L, Navarro JM (1995) The reduction of xylose to xylitol by Candida guilliermondii and Candida parapsilosis: incidence of oxygen and pH. Biotechnol Lett 17:417–422Google Scholar
  93. 93.
    Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolyzates. I. Inhibition and detoxification. Bioresour Technol 74:17–24CrossRefGoogle Scholar
  94. 94.
    Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolyzates. II. Inhibitors and mechanism of inhibition. Bioresour Technol 74:25–33CrossRefGoogle Scholar
  95. 95.
    Parajo JC, Dominguez H, Dominguez JM (1996) Production of xylitol from concentrated wood hydrolyzates by Debaryomyces hansenii: effect of the initial cell concentration. Biotechnol Lett 18:593–598Google Scholar
  96. 96.
    Parajo JC, Dominguez H, Dominguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolyzates. Enzyme Microb Technol 21:18–24Google Scholar
  97. 97.
    Persson P, Larsson S, Jonsson LJ, Nilvebrant NO, Sivik B, Munteanu F, Thornby L, Gorton L (2002) Supercritical fluid extraction of a lignocellulosic hydrolyzate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol Bioeng 79:694–700CrossRefPubMedGoogle Scholar
  98. 98.
    Pfeifer MJ, Silva SS, Felipe MGA, Roberto IC, Mancilha IM (1996) Effect of culture conditions on xylitol production by Candida guilliermondii FTI 20037. Appl Biochem Biotechnol 57/58:423–430Google Scholar
  99. 99.
    Poutanen K, Puls J (1989) The xylanolytic enzyme system of Trichoderma reesei. In: Lewis G, Paice M (eds) Biogenesis and biodegradation of plant cell wall polymers. American Chemical Society, Washington, D.C., pp 630–640Google Scholar
  100. 100.
    Poutanen K, Tenkanen M, Korte H, Puls J (1991) Accessory enzymes involved in the hydrolysis of xylans. In: Leatham GF, Himmel ME (eds) Enzymes in biomass conversion. American Chemical Society, Washington, D.C., pp 426–436Google Scholar
  101. 101.
    Preziosi-Belloy L, Nolleau V, Navarro JM (2000) Xylitol production from aspenwood hemicellulose hydrolyzate by Candida guilliermondii. Biotechnol Lett 22:239–243CrossRefGoogle Scholar
  102. 102.
    Richard P, Putkonen M, Vaananen R, Londesborough J, Penttila M (2002) The missing link in the fungall-arabinose catabolic pathway, identification of the l-xylulose reductase gene. Biochemistry 41:6432–6437CrossRefPubMedGoogle Scholar
  103. 103.
    Roberto IC, Mancilha IM, Souza CAD, Felipe MGA, Sato S, Castro HFD (1994) Evaluation of rice straw hemicellulose hydrolyzate in the production of xylitol by Candida guilliermondii. Biotechnol Lett 16:1211–1216Google Scholar
  104. 104.
    Roberto IC, Felipe MGA, Mancilha IM, Vitola M, Sato S, Silva SS (1995) Xylitol production by Candida guilliermondii as an approach for the utilization of agroindustrial residues. Bioresour Technol 51:255–257CrossRefGoogle Scholar
  105. 105.
    Roberto IC, Sato S, Mancilha IM (1996) Effect of inoculum level on xylitol production from rice straw hemicellulose hydrolyzate by Candida guilliermondii. J Ind Microbiol 16:348–350PubMedGoogle Scholar
  106. 106.
    Roberto IC, Silva SS, Felipe MGA, Mancilha IM, Sato S (1996) Bioconversion of rice straw hemicellulose hydrolyzate for the production of xylitol: effect of pH and nitrogen source. Appl Biochem Biotechnol 57/58:339–347Google Scholar
  107. 107.
    Saha BC (2000) α-l-Arabinofuranosidase, biochemistry, molecular biology, and application in biotechnology. Biotechnol Adv 18:403–423CrossRefGoogle Scholar
  108. 108.
    Saha BC (2001) Xylanase from a newly isolated Fusarium verticillioides capable of utilizing corn fiber xylan. Appl Microbiol Biotechnol 56:762–766CrossRefPubMedGoogle Scholar
  109. 109.
    Saha BC (2001) Purification and characterization of an extracellular β-xylosidase from a newly isolated Fusarium verticillioides. J Ind Microbiol Biotechnol 27:241–245CrossRefPubMedGoogle Scholar
  110. 110.
    Saha BC (2002) Production, purification and properties of xylanase from a newly isolated Fusarium proliferatum. Process Biochem 37:1279–1284CrossRefGoogle Scholar
  111. 111.
    Saha BC, Bothast RJ (1996) Production ofl-arabitol from L-arabinose by Candida entomaea and Pichia guilliermondii. Appl Microbiol Biotechnol 45:299–306CrossRefGoogle Scholar
  112. 112.
    Saha BC, Bothast RJ (1997) Enzymes in lignocellulosic biomass conversion. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, D.C., pp 46–56Google Scholar
  113. 113.
    Saha BC, Bothast RJ (1997) Microbial production of xylitol. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, D.C., pp 307–319Google Scholar
  114. 114.
    Saha BC, Bothast RJ (1998) Purification and characterization of a novel thermostable α-l-arabinofuranosidase from a color-variant strain of Aureobasidium pullulans. Appl Environ Microbiol 64:216–220PubMedGoogle Scholar
  115. 115.
    Saha BC, Bothast RJ. (1998) Effect of carbon source on production of α-l-arabinofuranosidase by Aureobasidium pullulans. Curr Microbiol 37:337–340CrossRefPubMedGoogle Scholar
  116. 116.
    Saha BC, Bothast RJ (1999) Enzymology of xylan degradation. In: Imam SH, Greene RV, Zaidi BR (eds) Biopolymers: utilizing natures advanced materials. American Chemical Society, Washington, D.C., pp 167–194Google Scholar
  117. 117.
    Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77Google Scholar
  118. 118.
    Saha BC, Bothast RJ (1999) Production of xylitol by Candida peltata. J Ind Microbiol Biotechnol 22:633–636CrossRefPubMedGoogle Scholar
  119. 119.
    Saha BC, Bothast RJ (1999) Production of 2,3-butanediol by a newly isolated Enterobacter cloacae. Appl Microbiol Biotechnol 52:321–326CrossRefPubMedGoogle Scholar
  120. 120.
    Saha BC, Dien BS, Bothast RJ (1998) Fuel ethanol production from corn fiber: current status and technical prospects. Appl Biochem Biotechnol 70–72:115–125Google Scholar
  121. 121.
    Saulnier L, Thibault JF (1999) Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. J Sci Food Agric 79:396–402CrossRefGoogle Scholar
  122. 122.
    Saulnier L, Marot C, Chanliaud E, Thibault JF (1995) Cell wall polysaccharide interactions in maize bran. Carbohydr Polymers 26:279–287CrossRefGoogle Scholar
  123. 123.
    Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64:139–151Google Scholar
  124. 124.
    Schneider H, Wang PY, Chan YK, Maleszka R (1981) Conversion ofd-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol Lett 3:89–92Google Scholar
  125. 125.
    Sedlak M, Ho NWY (2001) Expression of E. coli araBAD operon encoding enzymes for metabolizing l-arabinose in Saccharomyces cerevisiae. Enzyme Microb Technol 2:16–24CrossRefGoogle Scholar
  126. 126.
    Shibuya N, Iwasaki T (1985) Structural features of rice bran hemicellulose. Phytochemistry 24:285–289CrossRefGoogle Scholar
  127. 127.
    Silva SS, Felipe GA, Mancilha IM (1998) Factors that affect the biosynthesis of xylitol by xylose-fermenting yeasts. A review. Appl Biochem Biotechnol 70–72:331–339Google Scholar
  128. 128.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefPubMedGoogle Scholar
  129. 129.
    Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18CrossRefPubMedGoogle Scholar
  130. 130.
    Thomson JA (1993) Molecular biology of xylan degradation. FEMS Microbiol Rev 104:65–92CrossRefGoogle Scholar
  131. 131.
    Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70Google Scholar
  132. 132.
    Tran AV, Chambers RP (1987) The dehydration of fermentative 2,3-butanediol into methyl ethyl ketone. Biotechnol Bioeng 29:343–351Google Scholar
  133. 133.
    Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224Google Scholar
  134. 134.
    Viikari L, Tenkanen M, Buchert J, Ratto M, Bailey M, Siika-aho M, Linko M (1993) Hemicellulases for industrial applications. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. CAB, Oxford, pp 131–182Google Scholar
  135. 135.
    Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350Google Scholar
  136. 136.
    Wang PY, Shopsis C, Schneider H (1980) Fermentation of a pentose by yeasts. Biochem Biophys Res Commun 94:248–254PubMedGoogle Scholar
  137. 137.
    Weil J, Westgate P, Kohlmann K, Ladisch MR (1994) Cellulose pretreatments of lignocellulosic substrates. Enzyme Microb Technol 16:1002–1004CrossRefPubMedGoogle Scholar
  138. 138.
    Winkelhausen E, Kuzmanova S (1998) Microbial conversion ofd-xylose to xylitol. J Ferment Bioeng 86:1–14Google Scholar
  139. 139.
    Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–317PubMedGoogle Scholar
  140. 140.
    Wyman CE (1994) Alternative fuels from biomass and their impact on carbon dioxide accumulation. Appl Biochem Biotechnol 45/46:897–915Google Scholar
  141. 141.
    Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50:3–16Google Scholar
  142. 142.
    Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol 20:132–138CrossRefGoogle Scholar
  143. 143.
    Yu EKC, Saddler JN (1985) Biomass conversion to butanediol by simultaneous saccharification and fermentation. Trends Biotechnol 3:100–104Google Scholar
  144. 144.
    Zeikus JG, Lee C, Lee YE, Saha BC (1991) Thermostable saccharidases: new sources, uses, and biodesign. In: Leatham GF, Himmel ME (eds) Enzymes in biomass conversion. American Chemical Society, Washington, D.C., pp 36–51Google Scholar
  145. 145.
    Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio M (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243Google Scholar
  146. 146.
    Zhang M, Chou Y, Picataggio S, Finklestein M (1998) Zymomonas mobilis strain for xylose utilization and arabinose fermentation. US Patent 5,843, 760Google Scholar
  147. 147.
    Zheng Y, Lin HM, Wen J, Cao N, Yu X, Tsao GT (1995) Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol Lett 17:845–850Google Scholar
  148. 148.
    Zheng YZ, Lin HM, Tsao GT (1998) Pretreatment of cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2003

Authors and Affiliations

  1. 1.Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research ServiceU. S. Department of AgriculturePeoriaUSA

Personalised recommendations