Advertisement

Approaches to stabilization of inter-domain recombination in polyketide synthase gene expression plasmids

  • Z. Hu
  • R. P. Desai
  • Y. Volchegursky
  • T. Leaf
  • E. Woo
  • P. Licari
  • D. V. Santi
  • C. R. Hutchinson
  • R. McDanielEmail author
Original Paper

Abstract.

Regions of extremely high sequence identity are recurrent in modular polyketide synthase (PKS) genes. Such sequences are potentially detrimental to the stability of PKS expression plasmids used in the combinatorial biosynthesis of polyketide metabolites. We present two different solutions for circumventing intra-plasmid recombination within the megalomicin PKS genes in Streptomyces coelicolor. In one example, a synthetic gene was used in which the codon usage was reengineered without affecting the primary amino acid sequence. The other approach utilized a heterologous subunit complementation strategy to replace one of the problematic regions. Both methods resulted in PKS complexes capable of 6-deoxyerythronolide B analogue biosynthesis in S. coelicolor CH999, permitting reproducible scale-up to at least 5-l stirred-tank fermentation and a comparison of diketide precursor incorporation efficiencies between the erythromycin and megalomicin PKSs.

Keywords.

6-Deoxyerythronolide B Erythromycin Megalomicin 

Notes

Acknowledgement.

The authors wish to thank Dr. Ralph Reid for bioinformatic support and insightful discussions.

References

  1. 1.
     DeHoff BS, Sutton KL, Rosteck PR (1996) Sequence of Streptomyces fradiae tylactone synthase. GenBank U78289Google Scholar
  2. 2.
     Desai RP, Leaf T, Woo E, Licari P (2002) Enhanced production of heterologous macrolide aglycones by fed-batch cultivation of Streptomyces coelicolor. J Ind Microbiol Biotechnol (in press)Google Scholar
  3. 3.
     Jacobsen JR, Hutchinson CR, Cane DE, Khosla C (1997) Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase. Science 277:367–369CrossRefPubMedGoogle Scholar
  4. 4.
     Kao CM, Pieper R, Cane DE, Khosla C (1996) Evidence for two catalytically independent clusters of active sites in a functional modular polyketide synthase. Biochemistry 35:12363–12368CrossRefPubMedGoogle Scholar
  5. 5.
     Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, NorwichGoogle Scholar
  6. 6.
     Leaf TL, Cadapan L, Carreras C, Regentin R, Ou S, Woo E, Ashley G, Licari P (2000) Precursor-directed biosynthesis of 6-deoxyerythronolide B analogs in Streptomyces coelicolor: understanding precursor effects. Biotechnol Prog 16:553–556CrossRefPubMedGoogle Scholar
  7. 7.
     MacNeil DJ, Occi JL, Gewain KM, MacNeil T, Gibbons PH, Ruby CL, Danis SJ (1992) Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115:119–125PubMedGoogle Scholar
  8. 8.
     McDaniel R, Ebert–Khosla S, Hopwood D, Khosla C (1993) Engineered biosynthesis of novel polyketides. Science 262:1546–1557PubMedGoogle Scholar
  9. 9.
     McDaniel R, Khosla C (2001) Understanding and exploiting bacterial polyketide synthases. In: Kirst HA, Yeh W-K, Zmijewski MJ Jr (eds) Enzyme technologies for pharmaceutical and biotechnological applications. Dekker, New York, pp 397–426Google Scholar
  10. 10.
     O'Hagan D (1991) The polyketide metabolites. Ellis Horwood, ChichesterGoogle Scholar
  11. 11.
     Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview, N.Y.Google Scholar
  12. 12.
     Shah S, Xue Q, Tang L, Carney JR, Betlach M, McDaniel R (2000) Cloning, characterization and heterologous expression of a polyketide synthase and P-450 oxidase involved in the biosynthesis of the antibiotic oleandomycin. J Antibiot 53:502–508PubMedGoogle Scholar
  13. 13.
     Swan DG, Rodriguez AM, Vilches C, Mendez C, Salas JA (1994) Characterisation of a Streptomyces antibioticus gene encoding a type I polyketide synthase which has an unusual coding sequence. Mol Gen Genet 242:358–362PubMedGoogle Scholar
  14. 14.
     Tang L, Fu H, McDaniel R (2000) Formation of functional heterologous complexes using subunits from the picromycin, erythromycin, and oleandomycin polyketide synthases. Chem Biol 7:77–84CrossRefPubMedGoogle Scholar
  15. 15.
     Tsai JF, Chen CW (1987) Isolation and characterization of Streptomyces lividans mutants deficient in intraplasmid recombination. Mol Gen Genet 208:211–218PubMedGoogle Scholar
  16. 16.
     Volchegursky Y, Hu Z, Katz L, McDaniel R (2000) Biosynthesis of the anti–parasitic agent megalomicin: transformation of erythromycin to megalomicin in Saccharopolyspora erythraea. Mol Microbiol 37:752–762CrossRefPubMedGoogle Scholar
  17. 17.
     Weissman KJ, Staunton J (2001) Polyketide synthases: analysis and use in synthesis. In: Kirst HA, Yeh W-K, Zmijewski MJ Jr (eds), Enzyme technologies for pharmaceutical and biotechnological applications. Dekker, New York, pp 427-470Google Scholar
  18. 18.
     Xue Q, Ashley G, Hutchinson CR, Santi DV (1999) A multi–plasmid approach to preparing large libraries of polyketides. Proc Natl Acad Sci USA 96:11740–11745PubMedGoogle Scholar
  19. 19.
     Ziermann R, Betlach M (2000) A two–vector system for the production of recombinant polyketides in Streptomyces. J Ind Microbiol Biotechnol 24:46–50CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2003

Authors and Affiliations

  • Z. Hu
    • 1
  • R. P. Desai
    • 1
  • Y. Volchegursky
    • 1
  • T. Leaf
    • 1
  • E. Woo
    • 1
  • P. Licari
    • 1
  • D. V. Santi
    • 1
  • C. R. Hutchinson
    • 1
  • R. McDaniel
    • 1
    Email author
  1. 1.Kosan Biosciences Inc.HaywardUSA

Personalised recommendations