Advertisement

GPS Solutions

, 23:110 | Cite as

Extraction of electron density profiles with geostationary satellite-based GPS side lobe occultation signals

  • Wenwen Li
  • Min LiEmail author
  • Qile Zhao
  • Chuang Shi
  • Meng Wang
  • Min Fan
  • Hong Wang
  • Kecai Jiang
Original Article
  • 43 Downloads

Abstract

GPS radio occultation (RO) measurements recorded on the geostationary earth orbit (GEO) satellite TJS-2 have been investigated for electron density profile (EDP) retrieval. The total electron content derived from TJS-2 single-frequency excess phase is refined by a moving average filter to smooth high-frequency errors, which outperforms the single-difference technique. The side lobe GPS RO signals have been used to estimate electron densities up to several thousand kilometers in height for the first time. By comparison with the ground-based digisonde, the IRI 2016 model and the Constellation Observing System for Meteorology, Ionosphere, and Climate satellite (COSMIC) EDPs, the TJS-2 ionospheric EDPs show good agreement with correlation coefficients exceeding 0.8. The TJS-2 average NmF2 differences compared to digisondes and COSMIC results are 12.9% and 1.4%, respectively, while the hmF2 differences are 1.65 km and 1.76 km, respectively. Our results reveal that GEO-based RO signals can estimate EDPs to altitudes up to several thousand kilometers at specific locations with daily repeatability, which makes it a very suitable technique for routinely monitoring EDP variations.

Keywords

GPS radio occultation GEO satellite Side lobe signal Electron density profile Digisonde COSMIC 

Notes

Acknowledgements

The authors would like to acknowledge the IGS for providing the precision GPS ephemeris and clock offset products, CDAAC for COSMIC electron density profile products, and the DIAS project for the digisonde data. The authors are very grateful to two anonymous reviewers for their valuable comments. This research is sponsored by the National Natural Science Foundation (Grant Nos. 41574027, 41574030 and 41774035), the National Key Research and Development Plan (Grant No. 2016YFB0501802), Wuhan Science and Technology Project (Grant No. 2019010701011391), and the Wuhan Morning Light Plan of Youth Science and Technology (Grant No. 2017050304010301).

References

  1. Balbach O, Eissfeller B, Hein GW, Enderle W, Schmidhuber M, Lemke N (1998) Tracking GPS above GPS satellite altitude: first results of the GPS experiment on the HEO mission Equator-S. In: IEEE 1998 Position Location and Navigation Symposium (Cat. No. 98CH36153), Palm Springs, April 20–23, pp 243–249Google Scholar
  2. Bauer F et al (2006) The GPS space service volume. In: Proceedings of ION GNSS 2006, Institute of Navigation, Fort Worth, September 26–29, pp 2503–2514Google Scholar
  3. Beyerle G (2008) Carrier phase wind-up in GPS reflectometry. GPS Solut 13(3):191–198.  https://doi.org/10.1007/s10291-008-0112-1 CrossRefGoogle Scholar
  4. Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X (2017) International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15(2):418–429CrossRefGoogle Scholar
  5. Chapel J et al (2015) Guidance, navigation, and control performance for the GOES-R spacecraft. Ceas Space J 7(2):87–104.  https://doi.org/10.1007/s12567-015-0077-1 CrossRefGoogle Scholar
  6. Fan M et al (2015) Orbit improvement for Chang’E-5T lunar returning probe with GNSS technique. Adv Space Res 56(11):2473–2482CrossRefGoogle Scholar
  7. Gallagher DL, Craven PD, Comfort RH (2000) Global core plasma model. J Geophys Res Space 105(A8):18819–18833CrossRefGoogle Scholar
  8. Hajj GA, Romans LJ (1998) Ionospheric electron density profiles obtained with the Global Positioning System: results from the GPS/MET experiment. Radio Sci 33(1):175–190CrossRefGoogle Scholar
  9. Jiang K, Li M, Wang M, Zhao Q, Li W (2018) TJS-2 geostationary satellite orbit determination using onboard GPS measurements. GPS Solut 22(3):87CrossRefGoogle Scholar
  10. Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12–28.  https://doi.org/10.1007/pl00012883 CrossRefGoogle Scholar
  11. Krankowski A, Krypiak-Gregorczyk A, Shagimuratov II, Wielgosz P (2011) Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data. J Geod 85(12):949–964CrossRefGoogle Scholar
  12. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res Atmos 102(D19):23429–23465CrossRefGoogle Scholar
  13. Larsen GB, Syndergaard S, Høeg P, Sørensen MB (2005) Single frequency processing of Ørsted GPS radio occultation measurements. GPS Solut 9(2):144–155CrossRefGoogle Scholar
  14. Lee IT et al (2012) Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering. J Geophys Res Atmos 117(A10):A10318CrossRefGoogle Scholar
  15. Lei J et al (2007) Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: preliminary results. J Geophys Res 112(A7):601–623CrossRefGoogle Scholar
  16. Liu JY, Lee CC, Yang JY, Chen CY, Reinisch BW (2010) Electron density profiles in the equatorial ionosphere observed by the FORMOSAT-3/COSMIC and a digisonde at Jicamarca. GPS Solut 14(1):75–81CrossRefGoogle Scholar
  17. Moreau MC, Davis EP, Carpenter JR, Kelbel D, Davis GW, Axelrad P (2002) Results from the GPS flight experiment on the high earth orbit AMSAT OSCAR-40 spacecraft. In: Proceedings of ION GPS 2002, Institute of Navigation, Portland, September 24–27, pp 122–133Google Scholar
  18. Schreiner W, Sokolovskiy S, Rocken C, Hunt D (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34(4):949–966.  https://doi.org/10.1029/1999RS900034 CrossRefGoogle Scholar
  19. Schreiner W, Rocken C, Sokolovskiy S, Syndergaard S, Hunt D (2007) Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys Res Lett 34(4):545–559.  https://doi.org/10.1029/2006GL027557 CrossRefGoogle Scholar
  20. Schreiner W, Rocken C, Sokolovskiy S, Hunt D (2010) Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single- and double-difference atmospheric excess phase processing. GPS Solut 14(1):13–22CrossRefGoogle Scholar
  21. Shubin VN (2015) Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations. Adv Space Res 56(5):916–928CrossRefGoogle Scholar
  22. Shubin VN, Karpachev AT, Tsybulya KG (2013) Global model of the F2 layer peak height for low solar activity based on GPS radio-occultation data. J Atmos Sol Terr Phys 104(2):106–115CrossRefGoogle Scholar
  23. Wickert J et al (2001) Atmosphere sounding by GPS radio occultation: first results from CHAMP. Geophys Res Lett 28(17):3263–3266CrossRefGoogle Scholar
  24. Yue X, Schreiner WS, Kuo YH, Hunt DC, Rocken C (2013) GNSS radio occultation technique and space weather monitoring. In: Proc. ION GNSS + 2013, Institute of Navigation, Nashville, September 16–20, pp 2508–2522Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wenwen Li
    • 1
  • Min Li
    • 1
    • 2
    Email author
  • Qile Zhao
    • 1
    • 2
  • Chuang Shi
    • 1
    • 2
    • 3
  • Meng Wang
    • 4
  • Min Fan
    • 5
  • Hong Wang
    • 5
  • Kecai Jiang
    • 1
  1. 1.GNSS Research CenterWuhan UniversityWuhanChina
  2. 2.Collaborative Innovation Center of Geospatial TechnologyWuhanChina
  3. 3.School of Electronic and Information EngineeringBeihang UniversityBeijingChina
  4. 4.Space Star Technology Co., LtdBeijingChina
  5. 5.Beijing Institute of Tracking and Telecommunications TechnologyBeijingChina

Personalised recommendations