Advertisement

GPS Solutions

, 23:84 | Cite as

Retrieving geophysical signals from GPS in the La Plata River region

  • Victoria GraffignaEmail author
  • Claudio Brunini
  • Mauricio Gende
  • Manuel Hernández-Pajares
  • Romina Galván
  • Fernando Oreiro
Original Article
  • 184 Downloads

Abstract

Over the last few years, efforts to model short-term deformations of the Earth’s crust have multiplied. Sudden water level rise can cause sporadic, but significant, motions in the solid Earth’s surface. In this work, we address the problem of retrieving reliable estimates of the vertical displacement of a Global Positioning System (GPS) station located very close to the eastern shore of the La Plata River, during a strong storm surge event. Capturing sub-daily GPS displacements demands an elaborate processing strategy because several highly correlated parameters must be estimated simultaneously. We present a successful strategy that reduces the number of unknowns that have to be estimated simultaneously, by using an empirical model that describes the elastic response of the Earth’s crust to the hydrological load variations. We incorporate this model into the observation equations so that, instead of estimating the station position, we estimate every epoch a single parameter of the empirical model, i.e., the empirical elastic parameter EEP, that is assumed to be a constant of the Earth’s crust in the region of the GPS station. We verify that the estimated parameter agrees well with the value calculated from the CRUST 1.0-A model of the Earth’s crust. The GPS receiver was tied to an external cesium clock, which allowed us to process the data according to two different strategies: (a) estimating the receiver clock error (Δt) as an epoch-wise free parameter, which is equivalent to ignoring the presence of the external clock, and (b) conditioning the variability of that estimate with a small a priori variance compatible with the external clock’s variability. We find that, without having an external atomic clock, the estimation of all the parameters, i.e., the zenith tropospheric delay, Δt, and the EEP, worsens when the GPS station is affected by sub-daily vertical displacements.

Keywords

Sub-daily effects Clock modeling GNSS vertical deformation Storm surge Crustal loading La Plata River 

Notes

Acknowledgments

We want to thank the Servicio de Hidrografía Naval (SHN) of Argentina and the Administración Nacional de Puertos of Uruguay (ANP) for the data provided from the tides gauges that made possible the estimation of the gravitational potential. We also want to thank Universidad Nacional de Cuyo for supporting the visit of Prof. Manuel Hernández-Pajares to Argentina, making possible the interaction that enabled this work.

References

  1. Bevis M (2005) Seasonal fluctuations in the mass of the Amazon River system and earth’s elastic response. Geophys Res Lett.  https://doi.org/10.1029/2005gl023491 CrossRefGoogle Scholar
  2. Blewitt G (2001) A new global mode of earth deformation: seasonal cycle detected. Science 294(5550):2342–2345.  https://doi.org/10.1126/science.1065328 CrossRefGoogle Scholar
  3. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium range weather forecasts operational analysis data. J Geophys Res Solid Earth.  https://doi.org/10.1029/2005jb003629 CrossRefGoogle Scholar
  4. Boussinesq M (1885) Applications des potentiels a l’Etude de l’Equilibreet du Mouvement des Solid eslastiques. Gauthier-Villars, Paris, p 508Google Scholar
  5. Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res Solid Earth 102(B9):20489–20502.  https://doi.org/10.1029/97jb01739 CrossRefGoogle Scholar
  6. Collilieux X, van Dam T, Ray J, Coulot D, Métivier L, Altamimi Z (2012) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geodesy 86(1):1–14.  https://doi.org/10.1007/s00190-011-0487-6 CrossRefGoogle Scholar
  7. D’Onofrio EE, Fiore MME, Pousa JL (2008) Changes in the regime of storm surges at Buenos Aires, Argentina. J Coast Res 1:260–265.  https://doi.org/10.2112/05-0588.1 CrossRefGoogle Scholar
  8. D’Onofrio E, Oreiro F, Fiore M (2012) Simplified empirical astronomical tide model an application for the Río de la Plata estuary. Comput Geosci 44:196–202.  https://doi.org/10.1016/j.cageo.2011.09.019 CrossRefGoogle Scholar
  9. Dach R, Schaer S, Arnold D, Orliac E, Prange L, Susnik A, Villiger A, Jäggi A (2016) CODE final product series for the IGSGoogle Scholar
  10. Fratepietro F, Baker TF, Williams SDP, Camp MV (2006) Ocean loading deformations caused by storm surges on the northwest European shelf. Geophys Res Lett 33(6):1–4.  https://doi.org/10.1029/2005gl025475 CrossRefGoogle Scholar
  11. Geng J, Williams SD, Teferle FN, Dodson AH (2012) Detecting storm surge loading deformations around the southern North Sea using subdaily GPS. Geophys J Int 191(2):569–578CrossRefGoogle Scholar
  12. Guerrero RA, Acha EM, Framiñan MB, Lasta CA (1997) Physical oceanography of the Río de la Plata Estuary, Argentina. Cont Shelf Res 17(7):727–742CrossRefGoogle Scholar
  13. Hernández-Pajares M, Juan JM, Sanz J, Colombo OL (2000) Application of ionospheric tomography to real-time GPS carrier-phase ambiguities resolution, at scales of 400–1000 km and with high geomagnetic activity. Geophys Res Lett 27(13):2009–2012CrossRefGoogle Scholar
  14. Hernández-Pajares M, Zornoza J, Subirana J, Colombo O (2003) Feasibility of wide-area subdecimeter navigation with GALILEO and modernized GPS. IEEE Trans Geosci Remote Sens 41(9):2128–2131.  https://doi.org/10.1109/tgrs.2003.817209 CrossRefGoogle Scholar
  15. Juan JM et al (2012) Enhanced precise point positioning for GNSS users. IEEE Trans Geosci Remote Sens 50(10):4213–4222CrossRefGoogle Scholar
  16. Krawinkel T, Schön S (2016) Benefits of receiver clock modeling in code-based GNSS navigation. GPS Solut 20(4):687–701CrossRefGoogle Scholar
  17. Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1.0- A 1-degree Global Model of Earth’s Crust. In: EGU general assembly conference abstracts, vol 15, p EGU2013-2658Google Scholar
  18. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415CrossRefGoogle Scholar
  19. Malys S, Jensen PA (1990) Geodetic point positioning with GPS carrier beat phase data from the CASA uno experiment. Geophys Res Lett 17(5):651–654CrossRefGoogle Scholar
  20. Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: tools for seismic analysis of porous media. Cambridge University Press, Cambridge, p 82CrossRefGoogle Scholar
  21. Nordman M, Virtanen H, Nyberg S, Mäkinen J (2015) Non-tidal loading by the Baltic Sea: comparison of modelled deformation with GNSS time series. GeoResJ 7:14–21CrossRefGoogle Scholar
  22. Oreiro FA, Wziontek H, Fiore MME, D’Onofrio EE, Brunini C (2018) Non-tidal ocean loading correction for the Argentinean German geodetic observatory using an empirical model of storm surge for the Río de La Plata. Pure Appl Geophys 175(5):1739–1753.  https://doi.org/10.1007/s00024-017-1651-6 CrossRefGoogle Scholar
  23. Petit G, Luzum B (eds) (2010) IERS Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main. ISBN: 3-89888-989-6Google Scholar
  24. Santerre R (1991) Impact of GPS satellite sky distribution. Manuscr Geod 16:28–53Google Scholar
  25. Santerre R, Geiger A, Banville S (2017) Geometry of GPS dilution of precision: revisited. GPS Solut 21(4):1747–1763CrossRefGoogle Scholar
  26. van Dam T, Ray R (2010) S1 and S2 atmospheric tide loading effects for geodetic applications. Data set/Model at http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html. Accessed 30 June 2018
  27. van Dam T, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavallée D, Larson KM (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28(4):651–654CrossRefGoogle Scholar
  28. Virtanen H, Mäkinen J (2003) The effect of the Baltic Sea level on gravity at the Metsähovi station. J Geodyn 35(4–5):553–565CrossRefGoogle Scholar
  29. Weinbach U, Schön S (2009) Evaluation of the clock stability of geodetic GPS receivers connected to an external oscillator. In: Proceedings of the ION GNSS, Savannah International Convention Center, Savannah, Georgia, USA, September 22–25, pp 3317–3328Google Scholar
  30. Weinbach U, Schön S (2015) Improved GPS-based coseismic displacement monitoring using high-precision oscillators. Geophys Res Lett 42:3773–3779.  https://doi.org/10.1002/2015GL063632 CrossRefGoogle Scholar
  31. Wübbena G, Schmitz M, Bagge A (2005) PPP-RTK: precise point positioning using state-space representation in RTK networks. In: Proceedings of the ION GNSS, Long Beach Convention Center, Long Beach, California, USA, September 13–16, pp 2584–2594Google Scholar
  32. Zou R, Freymueller JT, Ding K, Yang S, Wang Q (2014) Evaluating seasonal loading models and their impact on global and regional reference frame alignment. J Geophys Res Solid Earth 119(2):1337–1358.  https://doi.org/10.1002/2013jb010186 CrossRefGoogle Scholar
  33. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102(B3):5005–5017.  https://doi.org/10.1029/96jb03860 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias Astronómicas y GeofísicasUniversidad Nacional de La Plata (FCAG-UNLP)La PlataArgentina
  2. 2.Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Servicio de Hidrografía NavalBuenos AiresArgentina

Personalised recommendations