Advertisement

GPS Solutions

, 23:70 | Cite as

Parallel computation of regional CORS network corrections based on ionospheric-free PPP

  • Linyang Li
  • Zhiping LuEmail author
  • Zhengsheng Chen
  • Yang Cui
  • Yingcai Kuang
  • Fangchao Wang
Original Article
  • 214 Downloads

Abstract

Global navigation satellite system real-time processing requires low latency, high timeliness, and high computational efficiency. A typical application is providing corrections using data from a regional Continuously Operating Reference Station (CORS) network. Usually the wide-lane and narrow-lane fractional cycle biases (FCBs) are determined at the server and broadcast to users to fix undifferenced ambiguity. Also, a tropospheric model is established at the server and broadcast to users to obtain accurate and reliable a priori zenith total delays for precise point positioning (PPP) using the ionospheric-free (IF) observation combination. Currently, serial methods are typically applied, i.e., all reference stations are involved in estimating the wide-lane and narrow-lane FCBs and establishing a regional tropospheric delay model. To improve the efficiency and shorten the latency, we develop a parallel computation method for regional CORS network corrections based on IF PPP by adopting a multicore parallel computing technology task parallel library, wherein parallel computations involving the FCBs, tropospheric delays, and tropospheric model are successively performed based on data parallelism, in which the same operation is performed concurrently on elements in an array, and task parallelism, which refers to one or more independent tasks running concurrently. Data covering four seasons from the Hong Kong and southwestern America CORS networks are utilized in the experiment. The single differenced FCBs between satellites are determined within each full pass, and a tropospheric model with an internal accuracy better than 1.4 cm and an external accuracy better than 1.6 cm is derived at the server. With the parallel implementation, the speedup ratios of FCB estimation and tropospheric modeling are 1.79, 3.15, 5.59, and 9.69 times higher for dual-core, quad-core, octa-core, and hexadeca-core platforms, respectively, than for a single-core platform.

Keywords

GNSS Fractional cycle biases Tropospheric modeling Parallel computing Task parallel library 

Notes

Acknowledgements

The authors thank the Hong Kong Surveying and Mapping office and National Geodetic Survey for offering GNSS data and IGS for offering precise products. This study was supported by the National Natural Science Foundation of China (No. 41674019) and the National Key Research and Development Program of China (No. 2016YFB0501701).

References

  1. Askne J, Nordius H (1987) Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci 22(3):379–386.  https://doi.org/10.1029/RS022i003p00379 CrossRefGoogle Scholar
  2. Bender M, Dick G, Ge M, Deng Z, Wickert J, Kahle HG, Raabe A, Tetzlaff G (2010) Development of a GNSS water vapor tomography system using algebraic reconstruction techniques. Adv Space Res 47(10):1704–1720.  https://doi.org/10.1016/j.asr.2010.05.034 CrossRefGoogle Scholar
  3. Blewitt G (1990) An automatic editing algorithm for GPS data. Geophys Res Lett 17(3):199–202.  https://doi.org/10.1029/GL017i003p00199 CrossRefGoogle Scholar
  4. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res Solid Earth 111:B02406.  https://doi.org/10.1029/2005JB003629 CrossRefGoogle Scholar
  5. Boehm J, Moeller G, Schindelegger M, Pain G, Weber R (2015) Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut 19(3):433–441.  https://doi.org/10.1007/s10291-014-0403-7 CrossRefGoogle Scholar
  6. Boomkamp H (2010) Global GPS reference frame solutions of unlimited size. Adv Space Res 46(2):136–143.  https://doi.org/10.1016/j.asr.2010.02.015 CrossRefGoogle Scholar
  7. Brockmann E, Troller M (2002) GPS meteorology in the Swiss Alps: interpolation accuracy for different Alpine areas and near real-time results. Paper presented at Exploitation of Ground-Based GPS for Meteorology, COST Action 716 Workshop, GeoForschungsZentrum Potsdam, Potsdam, Germany, 28–29 JanGoogle Scholar
  8. Chen H, Jiang W, Ge M, Wickert J, Schuh H (2014) An enhanced strategy for GNSS data processing of massive networks. J Geod 88(9):857–867.  https://doi.org/10.1007/s00190-014-0727-7 CrossRefGoogle Scholar
  9. Choi K, Coloma F, Haw D, Saleh J, Sun L, Sella G, Yoon S (2016) Reanalysis of the CORS network data tied to a global frame. https://www.gps.gov/cgsic/meetings/2016/choi.pdf. Accessed 12 Sep 2016
  10. Cui Y, Lu Z, Li L, Chen Z, Sun D, Kuang Y (2017) A fast parallel processing strategy of double difference model for GNSS huge networks. Acta Geodaetica et Cartographica Sinica 46(7):848–856.  https://doi.org/10.11947/j.AGCS.2017.20160585 CrossRefGoogle Scholar
  11. de Oliveira PS Jr, Morel L, Fund F, Legros R, Monico JFG, Durand S, Durand F (2017) Modeling tropospheric wet delays with dense and sparse network configurations for PPP-RTK. GPS Solut 21(1):237–250.  https://doi.org/10.1007/s10291-016-0518-0 CrossRefGoogle Scholar
  12. Deng Z, Bender M, Zus F, Ge M, Dick G, Ramatschi M, Wickert J, Löhnert U, Schön S (2011) Validation of tropospheric slant path delays derived from single and dual frequency GPS receivers. Radio Sci 46:RS6007.  https://doi.org/10.1029/2011RS004687 CrossRefGoogle Scholar
  13. Dong D, Bock Y (1989) Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966.  https://doi.org/10.1029/JB094iB04p03949 CrossRefGoogle Scholar
  14. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7):389–399.  https://doi.org/10.1007/s00190-007-0187-4 CrossRefGoogle Scholar
  15. Ge M, Zou X, Dick G, Jiang W, Wickert J, Liu J (2010) An alternative network RTK approach based on undifferenced observation corrections. In: Proceedings of the ION GNSS 2010, Portland, Oral reportGoogle Scholar
  16. Geng J, Teferle FN, Shi C, Meng X, Dodson AH, Liu J (2009) Ambiguity resolution in precise point positioning with hourly data. GPS Solut 13(4):263–270.  https://doi.org/10.1007/s10291-009-0119-2 CrossRefGoogle Scholar
  17. Gu S, Shi C, Lou Y, Liu J (2015) Ionospheric effects in uncalibrated phase delay estimation and ambiguity-fixed PPP based on raw observable model. J Geod 89(5):447–457.  https://doi.org/10.1007/s00190-015-0789-1 CrossRefGoogle Scholar
  18. Hadas T, Kaplon J, Bosy J, Sierny J, Wilgan K (2013) Near-real-time regional troposphere models for the GNSS precise point positioning technique. Meas Sci Technol 24(5):055003.  https://doi.org/10.1088/0957-0233/24/5/055003 CrossRefGoogle Scholar
  19. Li P, Zhang X (2015) Precise point positioning with partial ambiguity fixing. Sensors 15(6):13627–13643.  https://doi.org/10.3390/s150613627 CrossRefGoogle Scholar
  20. Li X, Zhang X, Ge M (2011) Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. J Geod 85(3):151–158.  https://doi.org/10.1007/s00190-010-0424-0 CrossRefGoogle Scholar
  21. Li L, Lu Z, Cui Y, Wang Y, Huang X (2017a) Parallel resolution of large-scale GNSS network undifference ambiguity. Adv Space Res 60(12):2637–2647.  https://doi.org/10.1016/j.asr.2017.06.047 CrossRefGoogle Scholar
  22. Li Z, Zhang P, Sun Z, Wang F (2017b) Study on fast processing method for large scale GNSS network. Bull Surv Map 2:65–69Google Scholar
  23. Li L, Lu Z, Chen Z, Cui Y, Sun D, Wang Y, Kuang Y, Wang F (2019) GNSSer: objected-oriented and design pattern-based software for GNSS data parallel processing. J Spat Sci.  https://doi.org/10.1080/14498596.2019.1574245 CrossRefGoogle Scholar
  24. Malys S, Jensen PA (1990) Geodetic point positioning with GPS carrier beat phase data from the CASA UNO Experiment. Geophys Res Lett 17(5):651–654CrossRefGoogle Scholar
  25. Odijk D, Zhang B, Khodabandeh A, Odolinski R, Teunissen PJG (2016) On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory. J Geod 90(1):15–44.  https://doi.org/10.1007/s00190-015-0854-9 CrossRefGoogle Scholar
  26. Paul EM (2017) Is parallel programming hard, and, if so, what can you do about it? https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2017.11.22a.pdf. Accessed 22 Nov 2017
  27. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The use of artificial satellites for geodesy. Geophys Monogr 15(3):247–251.  https://doi.org/10.1029/GM015p0247 CrossRefGoogle Scholar
  28. Schön S (2007) Affine distortion of small GPS networks with large height differences. GPS Solut 11(2):107–117.  https://doi.org/10.1007/s10291-006-0042-8 CrossRefGoogle Scholar
  29. Serpelloni E, Casila G, Galvani A, Anzidei M (2006) Data analysis of permanent GPS networks in Italy and surrounding region: application of a distributed processing approach. Ann Geophys 49(4/5):897–928Google Scholar
  30. Shi J, Xu C, Guo J, Gao Y (2014) Local troposphere augmentation for real-time precise point positioning. Earth Planets Space 66:30.  https://doi.org/10.1186/1880-5981-66-30 CrossRefGoogle Scholar
  31. Takeichi N, Sakai T, Fukushima S, Ito K (2010) Tropospheric delay correction with dense GPS network in L1-SAIF augmentation. GPS Solut 14(2):185–192.  https://doi.org/10.1007/s10291-009-0133-4 CrossRefGoogle Scholar
  32. Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82.  https://doi.org/10.1007/BF00863419 CrossRefGoogle Scholar
  33. Villiger A, Dach R (eds) (2018) International GNSS service technical report 2017 (IGS annual report). IGS Central Bureau and University of Bern; Bern Open Publishing.  https://doi.org/10.7892/boris.116377
  34. Wübbena G, Schmitz M, Bagge A (2005) PPP-RTK: precise point positioning using state-space representation in RTK networks. In: Proceedings of the ION GNSS 2005, Long Beach, California, USA, September 13–16Google Scholar
  35. Yang Y (1993) Robust estimation theory and its applications. Bayi Publishing House, BeijingGoogle Scholar
  36. Yao Y, Peng W, Xu C, Cheng S (2017) Enhancing real-time precise point positioning with zenith troposphere delay products and the determination of corresponding tropospheric stochastic models. Geophys J Int 208(2):1217–1230.  https://doi.org/10.1007/s10291-017-0617-6 CrossRefGoogle Scholar
  37. Zheng F, Lou Y, Gu S, Gong X, Shi C (2017) Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning. J Geod 92(5):545–560.  https://doi.org/10.1007/s00190-017-1080-4 CrossRefGoogle Scholar
  38. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017.  https://doi.org/10.1029/96JB03860 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Linyang Li
    • 1
  • Zhiping Lu
    • 1
    Email author
  • Zhengsheng Chen
    • 2
  • Yang Cui
    • 3
  • Yingcai Kuang
    • 1
  • Fangchao Wang
    • 1
  1. 1.Institute of Surveying and Mapping, Information Engineering UniversityZhengzhouChina
  2. 2.Rocket Force University of EngineeringXi’anChina
  3. 3.Army Logistics University of PLAChongqingChina

Personalised recommendations