Advertisement

GPS Solutions

, 23:17 | Cite as

Real-time capturing of seismic waveforms using high-rate BDS, GPS and GLONASS observations: the 2017 Mw 6.5 Jiuzhaigou earthquake in China

  • Xingxing Li
  • Kai ZhengEmail author
  • Xin Li
  • Gang Liu
  • Maorong Ge
  • Jens Wickert
  • Harald Schuh
Original Article
  • 295 Downloads

Abstract

The rapid development of the BeiDou Satellite Navigation System (BDS) and other Global Navigation Satellite System (multi-GNSS) constellations provides a great opportunity to contribute to earthquake early warning systems in terms of capturing displacement and velocity waveforms for the estimation of magnitude and fault slip inversion. In this study, we demonstrate the capability of BDS and the benefit of multi-GNSS for real-time capturing seismic waveforms using the combined high-rate BDS + GPS + GLONASS data collected during the 2017 Mw 6.5 Jiuzhaigou earthquake. For this event, we found that the displacements, derived from BDS precise point positioning (PPP) are better than that of Global Positioning System-only (GPS) results, especially in the east and vertical components with improvements of 43% and 23%. While the velocity waveforms from BDS present a comparable performance with GPS. the multi-GNSS fusion can significantly improve the accuracy by 47%, 55%, and 28% in the east, north, and vertical components compared with GPS-only results. The BDS and multi-GNSS derived displacement waveforms agree quite well with those obtained from integrating the acceleration, with accuracy at the millimeter level. In addition, the theoretical permanent displacement field calculated from a finite-fault slip model is selected as an independent reference, and the differences between GNSS derived permanent displacements and theoretical permanent displacements are mostly less than 1 mm. Therefore, we conclude that the BDS and multi-GNSS fusion can significantly contribute to the real-time capture of accurate seismic waveforms and that it has the potential to benefit for earthquake early warning and rapid geohazard assessment.

Keywords

Seismic waveforms High-rate BDS Multi-GNSS Real-time PPP Jiuzhaigou earthquake 

Notes

Acknowledgements

We are very grateful to MGEX (http://mgex.igs.org/IGS_MGEX_Data.php), CMONOC (http://www.cmonoc.cn), and BDGBAS (http://www.scbsm.gov.cn/) for providing multi-GNSS data. This work is funded by the China Scholarship Council (CSC, file 201706270123).

References

  1. Allen R, Alon Z (2011) Application of real-time GPS to earthquake early warning. Geophys Res Lett 38(16):L16310CrossRefGoogle Scholar
  2. Allen R, Kanamori H (2003) The potential for earthquake early warning in Southern California. Science 300(5620):786–789CrossRefGoogle Scholar
  3. Avallone A, Marzario M, Cirella A, Piatanesi A, Rovelli A, Alessandro CD, D’Anastasio E, D’Agostino N, Giuliani R, Mattone M (2011) Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: the case of the Mw 6.3 L’Aquila (central Italy) event. J Geophys Res 116(B2):B02305CrossRefGoogle Scholar
  4. Benedetti E, Branzanti M, Biagi L, Colosimo G, Mazzoni A, Crespi M (2014) Global navigation satellite systems seismology for the 2012 Mw 6.1 Emilia earthquake: exploiting the VADASE algorithm. Seismol Res Lett 85(3):649–656CrossRefGoogle Scholar
  5. Bock Y, Nikolaidis R, de Jonge PJ, Bevis M (2000) Instantaneous geodetic positioning at medium distances with the global positioning system. J Geophys Res 105(B12):28233–28253CrossRefGoogle Scholar
  6. Bock Y, Prawirodirdjo K, Melbourne TI (2004) Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network. Geophys Res Lett 31(6):L06604CrossRefGoogle Scholar
  7. Bock Y, Melgar D, Crowell BW (2011) Real-time strong-motion broadband displacements from collocated GPS and accelerometers. Bull Seismol Soc Am 101(6):2904–2925CrossRefGoogle Scholar
  8. Boore DM (2001) Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake. Bull Seismol Soc Am 91(5):1199–1211CrossRefGoogle Scholar
  9. Cai C, Gao Y (2013) Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solut 17(2):223–236CrossRefGoogle Scholar
  10. Chen K, Ge M, Babeyko A, Li X, Diao F, Tu R (2016) Retrieving real-time co-seismic displacements using GPS/GLONASS: a preliminary report from the September 2015 Mw 8.3 Illapel earthquake in Chile. Geophys J Int 206(2):941–953CrossRefGoogle Scholar
  11. Collins P, Henton J, Mireault Y, Heroux P, Schmidt M, Dragert H, Bisnath S (2009) Precise point positioning for real-time determination of co-seismic crustal motion. In: Proceedings of the ION GNSS 2009, Institute of Navigation, Savannah, 22–25 September 2009, pp 2479–2488Google Scholar
  12. Colombelli S, Allen RM, Zollo A (2013) Application of real-time GPS to earthquake early warning in subduction and strike-slip environments. J Geophys Res Solid Earth 118(7):3448–3461CrossRefGoogle Scholar
  13. Colosimo G, Crespi M, Mazzoni A (2011) Real-time GPS seismology with a stand-alone receiver: a preliminary feasibility demonstration. J Geophys Res 116(B11302):2156–2202Google Scholar
  14. Crowell BW, Bock Y, Squibb MB (2009) Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks. Seism Res Lett 80(5):772–782CrossRefGoogle Scholar
  15. Crowell BW, Bock Y, Melgar D (2012) Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment. Geophys Res Lett 39(9):L09305CrossRefGoogle Scholar
  16. Crowell BW, Melgar D, Bock Y, Haase JS, Geng J (2013) Earthquake magnitude scaling using seismogeodetic data. Geophys Res Lett 40(23):6089–6094CrossRefGoogle Scholar
  17. Dreger D, Kaverina A (2000) Seismic remote sensing for the earthquake source process and near-source strong shaking: a case study of the October 16, 1999 Hector Mine earthquake. Geophys Res Lett 27(13):1941–1944CrossRefGoogle Scholar
  18. Ge M, Dousa J, Li X, Ramatschi M, Wickert J (2011) A novel realtime precise positioning service system: global precise point positioning with regional augmentation. In: Proceedings of the 3rd international colloquium—Galileo science, 31 Aug–2 Sep 2011, CopenhagenGoogle Scholar
  19. Geng T, Xie X, Fang R, Su X, Zhao Q, Liu G (2016) Real-time capture of seismic waves using high-rate multi-GNSS observations: application to the 2015 mw 7.8 Nepal earthquake. Geophys Res Lett 43(1):161–167CrossRefGoogle Scholar
  20. Geng J, Jiang P, Liu J (2017) Integrating GPS with GLONASS for high-rate seismogeodesy. Geophys Res Lett 44(7):3139–3146CrossRefGoogle Scholar
  21. Geng J, Pan Y, Li X, Guo J, Liu J, Chen X, Zhang Y (2018) Noise characteristics of high-rate multi-GNSS for subdaily crustal deformation monitoring. J Geophys Res: Solid Earth 123(2):1987–2002CrossRefGoogle Scholar
  22. Guo F, Li X, Zhang X, Wang J (2016) Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS multi-GNSS experiment (MGEX). GPS Solut 21(1):279–290CrossRefGoogle Scholar
  23. Kanamori H (2007) Real-time earthquake damage mitigation measures. In: Gasparini P, Manfredi G, Zschau J (eds) Earthquake early warning systems. Springer, Berlin, pp 1–8 (ISBN-13 978-3-540-72240-34)Google Scholar
  24. Kawamoto S, Hiyama Y, Ohta Y, Nishimura T (2016) First result from the geonet real-time analysis system (regard): the case of the 2016 Kumamoto earthquakes. Earth Planets Space 68:190CrossRefGoogle Scholar
  25. Kouba J (2003) Measuring seismic waves induced by large earthquakes with GPS. Stud Geophys Geod 47(4):741–755CrossRefGoogle Scholar
  26. Kouba J (2009) A guide to using international GNSS service (IGS) products. http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf
  27. Larson K, Bodin P, Gomberg J (2003) Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300(5624):1421–1424CrossRefGoogle Scholar
  28. Li X, Ge M, Guo B, Wickert J, Schuh H (2013a) Temporal point positioning approach for real-time GNSS seismology using a single receiver. Geophys Res Lett 40(21):5677–5682CrossRefGoogle Scholar
  29. Li X, Ge M, Zhang X, Zhang Y, Guo B, Wang R, Klotz J, Wickert J (2013b) Real-time high-rate co-seismic displacement from ambiguity-fixed precise point positioning: application to earthquake early warning. Geophys Res Lett 40(2):295–300CrossRefGoogle Scholar
  30. Li X, Ge M, Dai X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89(6):607–635CrossRefGoogle Scholar
  31. Malys S, Jensen P (1990) Geodetic point positioning with GPS carrier beat phase data from the CASA UNO experiment. Geophys Res Lett 17(5):651–654CrossRefGoogle Scholar
  32. Melgar D, Crowell BW, Geng J, Allen RM, Bock Y, Riquelme S, Hill EM, Protti M, Ganas A (2015) Earthquake magnitude calculation without saturation from the scaling of peak ground displacement. Geophys Res Lett 42(13):5197–5205CrossRefGoogle Scholar
  33. Msaewe HA, Hancock CM, Psimoulis PA, Roberts GW, Bonenberg L, Ligt HD (2017) Investigating multi-GNSS performance in the UK and China based on a zero-baseline measurement approach. Measurement 102:186–199CrossRefGoogle Scholar
  34. Ohta Y, Kobayashi T, Tsushima H, Miura S, Hino R, Takasu T, Fujimoto H, Iinuma T, Tachibana K, Demachi T (2012) Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: application to the 2011 Tohoku-Oki earthquake (Mw 9.0). J Geophys Res 117(B2):2156–2202CrossRefGoogle Scholar
  35. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154Google Scholar
  36. Psimoulis PA, Houlie N, Meindl M, Rothacher M (2015) Consistency of PPP GPS and strong-motion records: case study of Mw 9.0 Tohoku-Oki 2011 earthquake. Smart Struct Syst 16(2):347–366CrossRefGoogle Scholar
  37. Psimoulis PA, Houlié N, Habboub M, Michel C, Rothacher M (2018a) Detection of ground motions using high-rate GPS time-series. Geophys J Int 214:1237–1251CrossRefGoogle Scholar
  38. Psimoulis PA, Houlié N, Behr Y (2018b) Real-time magnitude characterization of large earthquakes using the predominant period derived from 1 Hz GPS data. Geophys Res Lett 45:517–526CrossRefGoogle Scholar
  39. Saastamoinen J (1973) Contributions to the theory of atmospheric refraction—Part II. Refraction corrections in satellite geodesy. Bull Géod 47(1):13–34CrossRefGoogle Scholar
  40. Wang R, Schurr B, Milkereit C, Shao Z, Jin M (2011) An improved automatic scheme for empirical baseline correction of digital strongmotion records. Bull Seismol Soc Am 101(5):2029–2044CrossRefGoogle Scholar
  41. Xu P, Shi C, Fang R, Liu J, Niu X, Zhang Q, Yanagidani T (2013) High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units. J Geod 87(4):361–372CrossRefGoogle Scholar
  42. Yang Y, Li J, Wang A, Xu J, He H, Guo H, Shen J, Dai X (2014) Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system. Sci China Earth Sci 57(1):144–152CrossRefGoogle Scholar
  43. Zheng X, Zheng Y, Wang R (2017) Estimating the rupture process of the 8 August 2017 Jiuzhaigou earthquake by inverting strong-motion data with IDS method. Chinese J Geophys 60(11):4421–4430Google Scholar
  44. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  2. 2.German Research Centre for Geosciences GFZPotsdamGermany
  3. 3.Key Laboratory of Earthquake Geodesy, Institute of SeismologyChina Earthquake AdministrationWuhanChina
  4. 4.Technische Universität BerlinBerlinGermany

Personalised recommendations