GPS Solutions

, 22:113 | Cite as

PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis

  • Berkay Bahadur
  • Metin NohutcuEmail author
GPS Toolbox


The integration of different GNSS constellations offers considerable opportunities to improve Precise Point Positioning (PPP) performance. Being aware of the limited number of the alternatives that utilize the potential advantages of the multi-constellation and multi-frequency GNSS, we developed a MATLAB-based GNSS analysis software, named PPPH. PPPH is capable of processing GPS, GLONASS, Galileo and BeiDou data, and forming their different combinations depending on user’s preference. Thanks to its user-friendly graphical interface, PPPH allows users to determine a variety of processing options and parameters. In addition to an output file including the estimated parameters for every single epoch, PPPH also presents several analyzing and plotting tools for evaluating the results, such as positioning error, tropospheric zenith total delay, receiver clock estimation, satellite number, dilution of precisions. On the other hand, we conducted experimental tests to both validate the performance of PPPH and assess the potential benefits of multi-GNSS on PPP. The results indicate that PPPH provides comparable PPP solution with the general standards and also contributes to the improvement of PPP performance with the integration of multi-GNSS. Consequently, we introduce a GNSS analysis software that is easy to use, has a robust performance and is open to progress with its modular structure.


Precise point positioning (PPP) Multi-GNSS MATLAB software PPPH 



The authors thank the IGS and BKG for providing GNSS data and precise orbit and clock products.


  1. Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):L07304. CrossRefGoogle Scholar
  2. Cai C, Gao Y (2013) Modelling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions 17(2):223–236. CrossRefGoogle Scholar
  3. Cai C, Gao Y, Pan L, Zhu J (2015) Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS, and Galileo. Adv Space Res 56(1):133–143. CrossRefGoogle Scholar
  4. Choy S, Bisnath S, Rizos S (2017) Uncovering common misconceptions in GNSS Precise Point Positioning and its future prospect. GPS Solutions 21(1):13–22. CrossRefGoogle Scholar
  5. Defraigne P, Baire Q (2011) Combining GPS and GLONASS for time and frequency transfer. Adv Space Res 47(2):265–275. CrossRefGoogle Scholar
  6. Deo M, El-Mowafy A (2015) Cycle Slip and clock jump repair with multi-frequency multi-constellation GNSS data for precise point positioning. In: IGNSS Symposium Gold Coast, Australia, July 14–16Google Scholar
  7. Guo Q (2015) Precision comparison and analysis of four online free PPP services in static positioning and tropospheric delay estimation. GPS Solutions 19(4):537–544. CrossRefGoogle Scholar
  8. Guo F, Zhang X (2014a) Real-time clock jump compensation for precise point positioning. GPS Solutions 18(1):41–50. CrossRefGoogle Scholar
  9. Guo F, Zhang X (2014b) Adaptive robust Kalman filtering for precise point positioning. Meas Sci Technol 25(10):105011. CrossRefGoogle Scholar
  10. Guo F, Li X, Zhang X, Wang J (2017) The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning. Adv Space Res 59(11):2714–2725. CrossRefGoogle Scholar
  11. Hatch R (1982) The synergism of GPS code and carrier measurements. In: Proceedings of the third international symposium on satellite doppler positioning at physical sciences laboratory of New Mexico State University, vol 2, pp 1213–1231, Feb. 8–12Google Scholar
  12. Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS—global navigation satellite systems. Springer, New YorkGoogle Scholar
  13. Kouba J (2015) A guide to using international GNSS service (IGS) products. IGS website.
  14. Kouba J, Héroux P (2001) GPS precise point positioning using IGS orbit products. GPS Solutions 5(2):12–28. CrossRefGoogle Scholar
  15. Lagler K, Schindelegger M, Böhm J, Krásná H, Nilsson T (2013) GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40(6):1069–1073. CrossRefGoogle Scholar
  16. Leandro RF, Santos MC, Langley RB (2011) Analyzing GNSS data in precise point positioning software. GPS Solutions 15(1):1–13. CrossRefGoogle Scholar
  17. Li X, Ge M, Dai X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Accuracy and reliability of multi GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geodesy 89(6):607–635. CrossRefGoogle Scholar
  18. Liu Z (2011) A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. J Geodesy 85(3):171–183. CrossRefGoogle Scholar
  19. Mohinder SG, Lawrence RW, Angus PA (2007) Global positioning systems, inertial navigation, and integration. Wiley, New JerseyGoogle Scholar
  20. Montenbruck O et al (2017) The multi-GNSS experiment (MGEX) of the international GNSS service (IGS)—achievements, prospects and challenges. Adv Space Res 59(7):1671–1697. CrossRefGoogle Scholar
  21. Petit G, Luzum B (2010) IERS conventions 2010 (IERS Technical Note; 36). Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2010, p 179, ISBN: 3-89888-989-6Google Scholar
  22. Rizos C, Montenbruck O, Weber R, Neilan R, Hugentobler U (2013) The IGS MGEX Experiment as a milestone for a comprehensive multi-GNSS service. Proceedings of ION-PNT-2013, Institute of Navigation, Honolulu, USA, April 22–25, pp 289–295Google Scholar
  23. Saastamoinen J (1972) Contributions to the theory of atmospheric refraction. Bulletin Geodesique 105(1):279–298. CrossRefGoogle Scholar
  24. Seepersad G, Bisnath S (2014) Challenges in assessing PPP performance. J Appl Geodesy 8(3):205–222. CrossRefGoogle Scholar
  25. Togedor J, Øvstedal O, Vigen E (2014) Precise orbit determination and point positioning using GPS, GLONASS, Galileo and BeiDou. J Geodetic Sci 4(1):65–73. CrossRefGoogle Scholar
  26. Wanninger L (2012) Carrier-phase inter-frequency biases of GLONASS receivers. J Geodesy 86(2):139–148. CrossRefGoogle Scholar
  27. Wu J, Wu S, Hajj G, Bertiger W, Lichten S (1993) Effects of antenna orientation on GPS carrier phase. Manuscripta Geodaetica 18(2):91–98Google Scholar
  28. Yiğit C, Gikas V, Alçay S, Ceylan A (2014) Performance evaluation of short to long term GPS, GLONASS and GPS/GLONASS post-processed PPP. Survey Rev 46(336):155–166. CrossRefGoogle Scholar
  29. Zhou F, Dong D, Li W, Jiang X, Wickert J, Schuh H (2018) GAMP: an open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solutions 22:33. CrossRefGoogle Scholar
  30. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise pointpositioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102(B3):5005–5017. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geomatics EngineeringHacettepe UniversityAnkaraTurkey

Personalised recommendations