Advertisement

GPS Solutions

, Volume 21, Issue 4, pp 1583–1591 | Cite as

Global ionosphere map constructed by using total electron content from ground-based GNSS receiver and FORMOSAT-3/COSMIC GPS occultation experiment

  • Yang-Yi Sun
  • Jann-Yenq LiuEmail author
  • Ho-Fang Tsai
  • Andrzej Krankowski
Original Article

Abstract

Effects of rapidly changing ionospheric weather are critical in high accuracy positioning, navigation, and communication applications. A system used to construct the global total electron content (TEC) distribution for monitoring the ionospheric weather in near-real time is needed in the modern society. Here we build the TEC map named Taiwan Ionosphere Group for Education and Research (TIGER) Global Ionospheric Map (GIM) from observations of ground-based GNSS receivers and space-based FORMOSAT-3/COSMIC (F3/C) GPS radio occultation observations using the spherical harmonic expansion and Kalman filter update formula. The TIGER GIM (TGIM) will be published in near-real time of 4-h delay with a spatial resolution of 2.5° in latitude and 5° in longitude and a high temporal resolution of every 5 min. The F3/C TEC results in an improvement on the GIM of about 15.5%, especially over the ocean areas. The TGIM highly correlates with the GIMs published by other international organizations. Therefore, the routinely published TGIM in near-real time is not only for communication, positioning, and navigation applications but also for monitoring and scientific study of ionospheric weathers, such as magnetic storms and seismo-ionospheric anomalies.

Keywords

Global Ionospheric Map Total electron content FORMOSAT-3/COSMIC Ionospheric weather GNSS 

Notes

Acknowledgments

This study is supported by the grant of Ministry of Science and Technology to National Central University, MOST 104-2628-M-008-001, to National Cheng Kung University, MOST 105-2111-M-006-004, and the ISSI-Bern International Team of “Ionospheric Space Weather Studied by RO and Ground-based GNSS TEC Observations” (the team leader Liu J. Y. (TW)). The authors gratefully acknowledge Taiwan Analysis Center for COSMIC (TACC) for providing the near-real-time GNSS TEC data, as well as CDAAC and TACC for publishing F3/C RO data, and NASA/JPL for providing the OSTM/Jason-2 data (ftp://podaac-ftp.jpl.nasa.gov/allData/ostm/). The authors would like to thank the reviewers for their comments that help improve the paper.

References

  1. Davies K (1990) Ionospheric radio. IEEE Electromagnetic Waves Series 31Google Scholar
  2. Dumont JP, Rosmorduc V, Picot N, Desai S, Bonekamp H, Figa J, Lillibridge J, Scharroo R (2009) OSTM/Jason-2 products handbook. Jet Propul Lab, PasadenaGoogle Scholar
  3. Fuller-Rowell TJ, Araujo-Pradere EA, Minter C, Codrescu M, Spencer P, Robertson D, Jacobson AR (2006) US-TEC: a new data assimilation product from the space environment center characterizing the ionospheric total electron content using real-time GPS data. Radio Sci 41:RS6003. doi: 10.1029/2005RS003393 CrossRefGoogle Scholar
  4. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3):263–275. doi: 10.1007/s00190-008-0266-1 CrossRefGoogle Scholar
  5. Huang CM, Chen MQ, Liu JY (2010) Ionospheric positive storm phases at the magnetic equator close to sunset. J Geophys Res 115:A07315. doi: 10.1029/2009JA014936 Google Scholar
  6. Jin R, Jin S, Feng G (2012) M_DCB: matlab code for estimating GNSS satellite and receiver differential code biases. GPS Solut 16(4):541–548. doi: 10.1007/s10291-012-2790-3 CrossRefGoogle Scholar
  7. Jin S, Jin R, Hutoglu H (2017) Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations. J Geod. doi: 10.1007/s00190-016-0988-4 Google Scholar
  8. Lin CY, Liu JY, Lin CH, Sun YY, Araujo-pradere EA, Kakinami Y (2012) Using the IRI, the MAGIC model, and the co-located ground-based GPS receivers to study ionospheric solar eclipse and storm signatures on July 22, 2009. Earth Planets Space 64:513–520. doi: 10.5047/eps.2011.08.016 CrossRefGoogle Scholar
  9. Lin CY, Matsuo T, Liu JY, Lin CH, Tsai HF, Araujo-Pradere EA (2015) Ionospheric assimilation of radio occultation and ground-based GPS data using non-stationary background model error covariance. Atmos Meas Tech 8:171–182. doi: 10.5194/amt-8-171-2015 CrossRefGoogle Scholar
  10. Liu JY, Chen YI, Chen CH, Liu CY, Chen CY, Nishihashi M, Li JZ, Xia YQ, Oyama KI, Hattori K, Lin CH (2009) Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake. J Geophys Res 114:A04320. doi: 10.1029/2008JA013698 CrossRefGoogle Scholar
  11. Liu JY, Chen YI, Chen CH, Hattori K (2010) Temporal and spatial precursors in the ionospheric global positioning system (GPS) total electron content observed before the 26 December 2004 M9.3 Sumatra–Andaman Earthquake. J Geophys Res 115:A09312. doi: 10.1029/2010JA015313 Google Scholar
  12. Liu JY, Le H, Chen YI, Chen CH, Liu L, Wan W, Su YZ, Sun YY, Lin CH, Chen MQ (2011) Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake. J Geophys Res 116:A04302. doi: 10.1029/2010JA015704 Google Scholar
  13. Richmond AD (1995) Ionospheric electrodynamics using magnetic apex coordinates. J Geomag Geoelectr 47:191–212. doi: 10.5636/jgg.47.191 CrossRefGoogle Scholar
  14. Schaer S, Beutler G, Mervart L, Rothacher M, Wild U (1995) Global and regional ionosphere models using the GPS double difference phase observable. In: Proceedings of the IGS workshop on special topics and new directions, Potsdam, Germany, May 15–17, 77–92Google Scholar
  15. Schaer S, Beutler G, Rothacher M (1996) Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE analysis center. In: Proceedings of the IGS analysis center workshop, Silver Spring, MD, USA, 181–192Google Scholar
  16. Schaer S, Beutler G, Rothacher M (1998) Mapping and predicting the ionosphere. In: Proceedings of the IGS analysis center workshop, Darmstadt, Germany, February 9–11, 307–318Google Scholar
  17. Sun YY, Matsuo T, Araujo-Pradere EA, Liu JY (2013) Ground-based GPS observation of SED-associated irregularities over CONUS. J Geophys Res Space Phys 118:2478–2489. doi: 10.1029/2012JA018103 CrossRefGoogle Scholar
  18. Sun YY, Matsuo T, Maruyama N, Liu JY (2015) Field-aligned neutral wind bias correction scheme for global ionospheric modeling at midlatitudes by assimilating FORMOSAT-3/COSMIC h m F 2data under geomagnetically quiet conditions. J Geophys Res Space Phys 120:3130–3149. doi: 10.1002/2014JA020768 CrossRefGoogle Scholar
  19. Tsai HF, Liu JY (1999) Ionospheric total electron content response to solar eclipses. J Geophys Res 104(A6):12657–12668. doi: 10.1029/1999JA900001 CrossRefGoogle Scholar
  20. Welch G, Bishop G (1995) An introduction to the Kalman filter. Technical Report 95-041, Department of Computer Science, University of North Carolina at Chapel HillGoogle Scholar
  21. Zhang X, Tang L (2014) Daily global plasmaspheric maps derived from cosmic GPS observations. IEEE Trans Geosci Remote Sens 52(10):6040–6046CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yang-Yi Sun
    • 1
  • Jann-Yenq Liu
    • 1
    Email author
  • Ho-Fang Tsai
    • 2
  • Andrzej Krankowski
    • 3
  1. 1.Graduate Institute of Space ScienceNational Central UniversityTaoyuanTaiwan
  2. 2.Department of Earth SciencesNational Cheng Kung UniversityTainanTaiwan
  3. 3.Space Radio-Diagnostics Research CentreUniversity of Warmia and Mazury in OlsztynOlsztynPoland

Personalised recommendations