GPS Solutions

, Volume 21, Issue 4, pp 1549–1561 | Cite as

GPS differential code biases determination: methodology and analysis

  • Jaume Sanz
  • J. Miguel Juan
  • Adrià Rovira-Garcia
  • Guillermo González-Casado
Original Article

Abstract

We address two main problems related to the receiver and satellite differential code biases (DCBs) determination. The first issue concerns the drifts and jumps experienced by the DCB determinations of the International GNSS Service (IGS) due to satellite constellation changes. A new alignment algorithm is introduced to remove these nonphysical effects, which is applicable in real time. The full-time series of 18 years of Global Positioning System (GPS) satellite DCBs, computed by IGS, are realigned using the proposed algorithm. The second problem concerns the assessment of the DCBs accuracy. The short- and long-term receiver and satellite DCB performances for the different Ionospheric Associate Analysis Centers (IAACs) are discussed. The results are compared with the determinations computed with the two-layer Fast Precise Point Positioning (Fast-PPP) ionospheric model, to assess how the geometric description of the ionosphere affects the DCB determination and to illustrate how the errors in the ionospheric model are transferred to the DCB estimates. Two different determinations of DCBs are considered: the values provided by the different IAACs and the values estimated using their pre-computed Global Ionospheric Maps (GIMs). The second determination provides a better characterization of DCBs accuracy, as it is confirmed when analyzing the DCB variations associated with the GPS Block-IIA satellites under eclipse conditions, observed mainly in the Fast-PPP DCB determinations. This study concludes that the accuracy of the IGS IAACs receiver DCBs is approximately 0.3–0.5 and 0.2 ns for the Fast-PPP. In the case of the satellite DCBs, these values are about 0.12–0.20 ns for IAACs and 0.07 ns for Fast-PPP.

Keywords

DCB Ionospheric models GPS GNSS 

Notes

Acknowledgements

The authors acknowledge the use of data and products from the International GNSS Service. This work has been partially sponsored by the Spanish Ministry of Science and Innovation project CGL2015-66410-P, the ESA/ESTEC ICASES project PO 1520026618/01, and the ESA/EPO project EG-SIFE, Contract No. 40001122/14/NL/WE.

References

  1. Colleen HY, Feess WA, Esposti RD, Chasko A, Cosentino B, Wilson B, Wheaton B (1999) GPS satellite interfrequency biases. In: Proceedings of ION GPS 1999, Institute of Navigation, Cambridge, MA, USA, 27–30 June, pp 347–354Google Scholar
  2. Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Solar Terr Phys 61:1237–1247. doi:10.1016/S1364-6826(99)00054-1 CrossRefGoogle Scholar
  3. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83:263–275. doi:10.1007/s00190-008-0266-1 CrossRefGoogle Scholar
  4. IS-GPS-200H (2014). Navstar GPS space segment/navigation user interface. IS-GPS-200H interface control document. http://www.gps.gov/technical/icwg/IS-GPS-200H.pdf
  5. Juan JM, Rius A, Hernández-Pajares M, Sanz J (1997) A two layers model of the ionosphere using Global Positioning System data. Geophys Res Lett 24(4):393–396. doi:10.1029/97GL00092 CrossRefGoogle Scholar
  6. Komjathy A, Wilson BD, Runge TF, Boulat BM, Mannucci AJ, Sparks L, Reyes MJ (2002) A new ionospheric model for wide area differential GPS: the multiple shell approach. In: Proceedings of ION NTM 2002, Institute of Navigation, San Diego, CA, USA, 28–30 Jan, pp 460–466Google Scholar
  7. Li Z, Yuan Y, Li H, Ou J, Huo X (2012) Two-step method for the determination of the differential code biases of COMPASS satellites. J Geod 86(11):1059–1107. doi:10.1007/s00190-012-0565-4 CrossRefGoogle Scholar
  8. Montenbruck O, Hugentobler U, Dach R, Steigenberger P, Hauschild A (2011) Apparent clock variations of the Block IIF-1 (SVN062) GPS satellite. GPS Solut. 16(3):303–313. doi:10.1007/s10291-011-0232-x CrossRefGoogle Scholar
  9. Montenbruck O, Hauschild A, Steigenberger P (2014) Differential code bias estimation using multi-GNSS observations and global ionosphere maps. Navigation 61(3):191–201. doi:10.1002/navi.64 CrossRefGoogle Scholar
  10. Ray J, Senior K (2005) Geodetic techniques for time and frequency comparisons using GPS phase and code measurements. Metrologia 4(42):215–232. doi:10.1088/0026-1394/42/4/005 CrossRefGoogle Scholar
  11. Rovira-Garcia A, Juan JM, Sanz J, González-Casado G (2015) A World-Wide Ionospheric Model for Fast Precise Point Positioning. IEEE Trans Geosci Remote Sens 53(8):4596–4604. doi:10.1109/TGRS.2015.2402598 CrossRefGoogle Scholar
  12. Rovira-Garcia A, Juan JM, Sanz J, González-Casado G, Ibáñez-Segura D (2016) Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis. J Geod. 90(3):229–240. doi:10.1007/s00190-015-0868-3 CrossRefGoogle Scholar
  13. Schaer S (2008) Differential code biases (DCB) in GNSS analysis. In: Proceedings of international GNSS service analysis center workshop 2008, Miami Beach. https://www.ngs.noaa.gov/IGSWorkshop2008/docs/Schaer_DCB_IGSWS2008.ppt
  14. Schaer S, Guenter W, Feltens J (1998) IONEX: The IONosphere Map EXchange format version 1. https://igscb.jpl.nasa.gov/igscb/dataformat/ionex1.pdf
  15. Yue X, Schreiner WS, Hunt DC, Rocken C, Kuo YH (2011) Quantitative evaluation of the low Earth orbit satellite based slant total electron content determination. Space Weather 9(9):S09001. doi:10.1029/2011SW000687 CrossRefGoogle Scholar
  16. Zhang D, Shi H, Jin Y, Zhang W, Hao Y, Xiao Z (2014) The variation of the estimated GPS instrumental bias and its possible connection with ionospheric variability. Sci China Technol Sci 57(1):67–79. doi:10.1007/s11431-013-5419-7 CrossRefGoogle Scholar
  17. Zhong J, Lei J, Dou X, Yue X (2016) Is the long-term variation of the estimated GPS differential code biases associated with ionospheric variability? GPS Solut 20(3):313–319. doi:10.1007/s10291-015-0437-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.gAGE/UPCUniversitat Politecnica de CatalunyaBarcelonaSpain

Personalised recommendations