GPS Solutions

, Volume 19, Issue 4, pp 649–658 | Cite as

Modeling regional ionospheric delay with ground-based BeiDou and GPS observations in China

  • Rui Zhang
  • Wei-wei Song
  • Yi-bin Yao
  • Chuang Shi
  • Yi-dong Lou
  • Wen-ting Yi
Original Article


The Compass/BeiDou system is currently being built as a navigation constellation consisting of 16 navigation satellites. Construction of these satellites will significantly increase the number of visible satellites over the Chinese mainland and improve the geometry of satellite positioning. We obtained data by simulation and measurements to analyze the influence of BeiDou regarding the longest observation arc and the ionosphere piercing point distribution. A regional ionosphere delay model is built using data measured by BeiDou only, global positioning system (GPS) only, and the dual-satellite system. The results show that the model accuracy for BeiDou only is as accurate as the single GPS system in the middle and lower latitudes, while a deviation becomes noticeable at high latitudes and over marginal areas where observations are fewer due to lack of BeiDou satellites. With the current distribution of the satellites and tracking stations, it appears that the dual-satellite system could significantly improve the ionospheric model in China and the accuracy of differential code bias (DCB) determination. The experimental results also show that the BeiDou satellite DCB is quite stable, with a monthly maximum change of 1.8 ns.


BeiDou satellite navigation system GPS Regional ionospheric model DCB 



Thanks for the GPS satellite products offered by IGS, ionospheric and DCB products offered by CODE. This study was supported by the National Natural Science Foundation of China (41404010 and 41374034), the National High Technology Research and Development Program of China (2013AA122502).


  1. Alizadeh MM, Schuh H, Todorova S, Schmidt M (2011) Global ionosphere maps of VTEC from GNSS, satellite altimetry, and formosat-3/COSMIC data. J Geod 85(12):975–987CrossRefGoogle Scholar
  2. Bassiri S, Hajj GA (1993) Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manuscripta Geodaetica 18(6):280–289Google Scholar
  3. BeiDou (2012) BeiDou satellite navigation system network.
  4. Bilitza D, Reinisch BW (2008) International reference ionosphere 2007: improvements and new parameters. Adv Space Res 42(4):599–609CrossRefGoogle Scholar
  5. CODE (2012) Center for Orbit Determination in Europe. Astronomy Institute, University of Berne.
  6. Enge P, Walter T, Pullen S, Kee C, Chao YC, Tsai YJ (1996) Wide area augmentation of the global positioning system. Proc IEEE 84(8):1063–1088CrossRefGoogle Scholar
  7. Flohrer T, Choc R, Bastida B (2012) Classification of geosynchronous objects. GEN-DBLOG-00086-OPS-GR, issue 14, Feb., European Space Agency, ESA/ESOC, DarmstadtGoogle Scholar
  8. Hatch R (1982) The synergism of GPS code and carrier measurements. Proceeding third international symposium on satellite Doppler positioning, New Mexico State University, Feb 8–12, 2: 1213–1231Google Scholar
  9. Hauschild A, Montenbruck O, Sleewaegen JM, Huisman L, Teunissen P (2012) Characterization of compass M-1 signals. GPS Solut 16(1):117–126CrossRefGoogle Scholar
  10. Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Solar Terr Phys 61(16):1237–1247CrossRefGoogle Scholar
  11. Hernández-Pajares M, Juan JM, Sanz J, Orús R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer S, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275CrossRefGoogle Scholar
  12. Hernández-Pajares M, Juan JM, Sanz J, Aragón-Ángel A, García-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85(12):887–907CrossRefGoogle Scholar
  13. Hochegger G, Nava B, Radicella SM, Leitinger R (2000) A family of ionospheric models for different uses. Phys Chem Earth Part C 25(4):307–310Google Scholar
  14. Kim BC, Tinin MV (2011) Potentialities of multifrequency ionospheric correction in global navigation satellite systems. J Geod 85(3):159–169CrossRefGoogle Scholar
  15. Klobuchar J (1987) Ionospheric time-delay algorithm for single frequency GPS users. In: IEEE transactions on aerospace and electronic systems, AES 23(3):325–331Google Scholar
  16. Lachapelle G, Hagglund J, Falkenberg W, Bellemare P, Casey M, Eaton M (1986) GPS land kinematic positioning experiments. Proceeding fourth international geodetic symposium on satellite positioning, Austin, Texas, April 28–May 2, 2: 1327–1344Google Scholar
  17. Lanyi GE, Roth T (1988) A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci 23(4):483–492CrossRefGoogle Scholar
  18. Le AQ, Tiberius C (2007) Single-frequency precise point positioning with optimal filtering. GPS Solut 11(1):61–69CrossRefGoogle Scholar
  19. Liu JB, Wang ZM, Zhang HP, Zhu WY (2008) Comparison and consistency research of regional ionospheric TEC models based on GPS measurements. J Wuhan Univ (Inf Sci) 33(5):479–483 (In Chinese)Google Scholar
  20. Mannucci AJ, Wilson BD, Edwards CD (1993) A new method for monitoring the earth’s ionospheric total electron content using the GPS global network. Proceedings ION-GPS-1993, Institute of Navigation, Salt Lake City, 1323–1332Google Scholar
  21. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS derived ionospheric total electron content measurements. Radio Sci 33(3):565–583CrossRefGoogle Scholar
  22. Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222CrossRefGoogle Scholar
  23. Øvstedal O (2002) Absolute positioning with single frequency GPS receivers. GPS Solut 5(4):33–44CrossRefGoogle Scholar
  24. Schaer S (1999) Mapping and predicting the earth’s ionosphere using the global positioning system. Ph.D. dissertation, Bern: The University of BernGoogle Scholar
  25. Schaer S, Beutler G, Rothacher M (1996) Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE analysis center. Proceedings of the IGS AC Workshop, Silver Spring, MD, USA, 181–192Google Scholar
  26. Schunk RW, Scherliess L, Sojka JJ et al (2004) Global assimilation of ionospheric measurements (GAIM). Radio Sci, 39: RS1S02. doi: 10.1029/2002RS002794
  27. Shi C, Zhao Q, Li M, Tang W, Hu Z, Lou Y, Zhang H, Niu X, Liu J (2012) Precise orbit determination of BeiDou satellites with precise positioning. Sci China Earth Sci 55(7):1079–1086CrossRefGoogle Scholar
  28. Shi C, Zhao Q, Hu Z, Liu J (2013) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut 17(1):103–119CrossRefGoogle Scholar
  29. Venkataratnam D, Sarma AD (2012) Modeling of low latitude ionosphere using GPS data with SHF model. Geosci Remote Sens IEEE Trans 50(3):972–980CrossRefGoogle Scholar
  30. Weimer DR (2001) An improved model of ionospheric electric potentials including substorm perturbations and application to the geospace environment modeling November 24, 1996, event. J Geophys Res: Space Phys (1978–2012), 106(A1): 407–416Google Scholar
  31. Wild U (1994) Ionosphere and satellite systems: permanent GPS tracking data for modelling and monitoring. Geodätisch-geophysikalische Arbeiten in der Schweiz, Band 48Google Scholar
  32. Yang Y, Li J, Xu J, Tang J, Guo H, He H (2011) Contribution of the COMPASS satellite navigation system to global PNT users. Chin Sci Bull 56(26):2813–2819CrossRefGoogle Scholar
  33. Yuan Y, Ou J (2002) Differential areas for differential stations (DADS): a new method of establishing grid ionospheric model. Chin Sci Bull 47(12):1033–1036CrossRefGoogle Scholar
  34. Zhang HP (2006) Monitoring and research on ionosphere using Chinese ground based GPS network. Chinese Academy of Sciences, BeijingGoogle Scholar
  35. Zhang BC, Ou JK, Yuan YB, Li ZS (2012) Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci China Earth Sci 55(11):1919–1928CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rui Zhang
    • 1
    • 3
  • Wei-wei Song
    • 2
  • Yi-bin Yao
    • 3
  • Chuang Shi
    • 2
  • Yi-dong Lou
    • 2
  • Wen-ting Yi
    • 2
  1. 1.College of InformaticsSouth China Agricultural UniversityGuangzhouChina
  2. 2.Research Center of GNSSWuhan UniversityWuhanChina
  3. 3.School of Geodesy and GeomaticsWuhan UniversityWuhanChina

Personalised recommendations