GPS Solutions

, Volume 19, Issue 3, pp 443–456 | Cite as

GBAS ionospheric threat model assessment for category I operation in the Korean region

  • Minchan Kim
  • Yunjung Choi
  • Hyang-Sig Jun
  • Jiyun Lee
Original Article

Abstract

During extreme ionospheric storms, anomalous ionospheric gradients can become high enough to affect Global Navigation Satellite Systems (GNSS) Ground-Based Augmentation Systems (GBAS) and to threaten the safety of GBAS users. An ionospheric anomaly threat model for the Conterminous United States (CONUS) was developed based on extreme ionospheric gradients observed in CONUS during the last solar maximum period (2000–2004). However, in order to understand and mitigate ionosphere threats occurring in different geographical regions, ionospheric anomaly threat models have to be established for the relevant regions. To allow the certification of a GBAS ground facility in South Korea, a Korean ionospheric anomaly threat model must be determined. We describe the method of data analysis that was used to estimate ionospheric spatial gradients. Estimates of anomalous gradients in the Korean region were used to define and build an ionospheric anomaly threat model for this region. All gradient estimates obtained using Korean GNSS reference network data for potential ionospheric storm dates from 2000 to 2004 were included in this threat space. The maximum spatial gradient within this threat space is 160 mm of delay per km of user separation, which falls well within the bounds of the current ionospheric threat model for CONUS. We also provide a detailed examination of the two largest ionospheric spatial gradient events observed in this study, which occurred on November 10, 2004, and November 6, 2001, respectively.

Keywords

GNSS GBAS LAAS Ionospheric threat model 

References

  1. Datta-Barua S, Lee J, Pullen S, Luo M, Ene A, Qiu D, Zhang G, Enge P (2010) Ionospheric threat parameterization for local area Global-Positioning-System-based aircraft landing systems. J Aircraft 47(4):1141–1151. doi:10.2514/1.46719 CrossRefGoogle Scholar
  2. Ene A, Qiu D, Luo M, Pullen S, Enge P (2005) A comprehensive ionosphere storm data analysis method to support LAAS threat model development. In: Proceedings of ION NTM-2005, Institute of Navigation, San Diego CA, pp 110–130Google Scholar
  3. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275. doi:10.1007/s00190-008-0266-1 CrossRefGoogle Scholar
  4. Jung S, Lee J (2012) Long-term ionospheric anomaly monitoring for ground based augmentation systems. Radio Sci 47:RS4006. doi:10.1029/2012RS005016 CrossRefGoogle Scholar
  5. Komjathy A, Sparks L, Mannucci AJ (2004) A new algorithm for generating high precision ionospheric ground-truth measurements for FAA’s Wide Area Augmentation System. JPL Supertruth Document 1, Jet Propulsion Laboratory, PasadenaGoogle Scholar
  6. Komjathy A, Sparks L, Wilson BD, Mannucci AJ (2005) Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci 40:RS6006. doi:10.1029/2005RS003279
  7. Lee J, Pullen S, Datta-Barua S, Enge P (2007) Assessment of ionosphere spatial decorrelation for Global Positioning System-based aircraft landing systems. J Aircraft 44(5):1662–1669. doi:10.2514/1.28199 CrossRefGoogle Scholar
  8. Lee J, Datta-Barua S, Zhang G, Pullen S, Enge P (2011a) Observations of low-elevation ionospheric anomalies for ground-based augmentation of GNSS. Radio Sci 46:RS6005. doi:10.1029/2011RS004776 CrossRefGoogle Scholar
  9. Lee J, Seo J, Par YS, Pullen S, Enge P (2011b) Ionospheric threat mitigation by geometry screening in Ground-Based Augmentation Systems. J Aircraft 48(4):1422–1433. doi:10.2514/1.C031309 CrossRefGoogle Scholar
  10. Ma G, Maruyama T (2003) Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Ann Geophys 21:2083–2093. doi:10.5194/angeo-21-2083-2003 CrossRefGoogle Scholar
  11. Mannucci AJ, Tsurutani BT, Iijima B, Komjathy A, Wilson B, Pi X, Sparks L, Hajj G, Mandrake L, Gonzalez WD, Kozyra J, Yumoto K, Swisdak M, Huba JD, Skoug R (2013) Hemispheric daytime ionospheric response to intense solar wind forcing. In: Burch J, Schulz M, Spence H (eds) Inner magnetosphere interactions: new perspectives from imaging. American Geophysical Union, Washington, DC. doi:10.1029/159GM20
  12. Mayer C, Belabbas B, Jakowski N, Meurer M (2009) Ionosphere threat space model assessment for GBAS. In: Proceedings of ION GNSS-2009, Institute of Navigation, Savannah, pp 1091–1099Google Scholar
  13. Nishioka M, Saito A, Tsugawa T (2009) Super-Medium-Scale Traveling Ionospheric Disturbance observed at midlatitude during the geomagnetic storm on 10 November 2004. J Geophys Res 114:A07310. doi:10.1029/2008JA013581 Google Scholar
  14. Pullen S, Park YS, Enge P (2009) Impact and mitigation of ionospheric anomalies on ground-based augmentation of GNSS. Radio Sci 44:RS021. doi:10.1029/2008RS004084 CrossRefGoogle Scholar
  15. Sahai Y, Becker-Guedes F, Fagundes PR, de Jesus R, de Abreu AJ, Otsuka Y, Shiokawa K, Igarashi K, Yumoto K, Huang C-S, Lan HT, Saito A, Guarnieri FL, Pillat VG, Bittencourt JA (2009) Effects observed in the ionospheric F region in the east Asian sector during the intense geomagnetic disturbances in the early part of November 2004. J Geophys Res 114:A00A18. doi:10.1029/2008JA013053 Google Scholar
  16. Seo J, Lee J, Pullen S, Enge P, Close S (2012) Targeted Parameter inflation within ground-based augmentation systems to minimize anomalous ionospheric impact. J Aircraft 49(2):587–599CrossRefGoogle Scholar
  17. Yoon M, Lee J (2014) Medium-scale Travelling Ionospheric Disturbances in the Korean Region on 10 November 2004: potential impact on GPS-Based navigation systems. Space Weather 12:173–186. doi:10.1002/2013SW001002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Minchan Kim
    • 1
  • Yunjung Choi
    • 2
  • Hyang-Sig Jun
    • 2
  • Jiyun Lee
    • 1
  1. 1.Division of Aerospace EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  2. 2.Korea Aerospace Research InstituteDaejeonRepublic of Korea

Personalised recommendations