GPS Solutions

, Volume 19, Issue 2, pp 321–333 | Cite as

Broadcast versus precise ephemerides: a multi-GNSS perspective

  • Oliver MontenbruckEmail author
  • Peter Steigenberger
  • André Hauschild
Original Article


A consistent analysis of signal-in-space ranging errors (SISREs) is presented for all current satellite navigation systems, considering both global average values and worst-user-location statistics. The analysis is based on 1 year of broadcast ephemeris messages of the Global Positioning System (GPS), GLONASS, Galileo, BeiDou and QZSS collected with a near-global receiver network. Position and clock values derived from the navigation data are compared against precise orbit and clock products provided by the International GNSS Service and its multi-GNSS experiment. Satellite laser ranging measurements are used for a complementary and independent assessment of the orbit-only SISRE contribution. The need for proper consideration of antenna offsets is highlighted and block-/constellation-specific radial antenna offset values for the center-of-mass correction of broadcast orbits are derived. Likewise, the need for application of differential code biases in the comparison of broadcast and precise clock products is emphasized. For GPS, the analysis of the legacy navigation message is complemented by a discussion of the CNAV message performance based on the first CNAV test campaign in June 2013. Global average SISRE values for the individual constellations amount to 0.7 ± 0.02 m (GPS), 1.5 ± 0.1 m (BeiDou), 1.6 ± 0.3 m (Galileo), 1.9 ± 0.1 m (GLONASS), and 0.6 ± 0.2 m (QZSS) over a 12-month period in 2013/2014.


Orbit and clock errors SISRE MGEX SLR CNAV Antenna offsets 



The authors would like to thank the individual analysis centers of the IGS and its MGEX project for the provision of precise GNSS orbit and clock products used in this study. Their contribution is vital and greatly appreciated. Satellite laser ranging measurements of the various GNSS satellites considered in the orbit validation have kindly been provided by the International Laser Ranging Service (ILRS). Their support is likewise appreciated and gratefully acknowledged.


  1. Chen L, Jiao W, Huang X, Geng C, Ai L, Lu L, Hu Z (2013) Study on signal-in-space errors calculation method and statistical characterization of BeiDou navigation satellite system. In: Proceedings of China satellite navigation conference (CSNC). Lecture notes in electrical engineering 243, Springer, Berlin, pp 423–434. doi: 10.1007/978-3-642-37398-5_39
  2. Choi M, Blanch J, Akos D, Heng L, Gao G, Walter T, Enge P (2011) Demonstrations of multi-constellation advanced RAIM for vertical guidance using GPS and GLONASS signals. In: Proceedings of ION GNSS 2011, Portland, OR, pp 3227–3234Google Scholar
  3. Cohenour C, van Graas F (2011) GPS orbit and clock error distributions. Navigation 58(1):17–28CrossRefGoogle Scholar
  4. Cooley B (2013) GPS program updates. In: Proceedings of ION GNSS+ 2013, Nashville, TN, pp 537–554Google Scholar
  5. Creel T, Dorsey AJ, Mendicki PJ, Little J, Mach RG, Renfro BA (2007) Summary of accuracy improvements from the GPS legacy accuracy improvement initiative (L-AII). In: Proceedings of ION GNSS 2007, pp 2481–2498Google Scholar
  6. CSNO (2013) BeiDou navigation satellite system signal in space interface control document—open service signal (Version 2.0). China Satellite Navigation Office, 26 December 2013Google Scholar
  7. Dach R, Schmid R, Schmitz M, Thaller D, Schaer S, Lutz S, Steigenberger P, Wübbena G, Beutler G (2011) Improved antenna phase center models for GLONASS. GPS Solut 15(1):49–65. doi: 10.1007/s10291-010-0169-5 CrossRefGoogle Scholar
  8. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83:191–198CrossRefGoogle Scholar
  9. El-Mowafy A (2013) ARAIM for vertical guidance using GPS and BeiDou. J Glob Position Syst 12(1):28–37. doi: 10.5081/jgps.12.1.28 CrossRefGoogle Scholar
  10. EU (2010) European GNSS (Galileo) open service signal in space interface control document. OS SIS ICD, Issue 1.1, September 2010Google Scholar
  11. GPS Directorate (2012) Navstar GPS space segment/navigation user segment interfaces. Interface specification IS-GPS-200, revision G, 5 September 2012, Global Positioning Systems DirectorateGoogle Scholar
  12. GPS Directorate (2013) Global positioning system modernized civil navigation (CNAV) live-sky broadcast test plan. 30 May 2013, Global Positioning Systems DirectorateGoogle Scholar
  13. GOST (2008) Global navigation satellite system and global positioning system—coordinate systems, methods of transformations for determinated points coordinate. STB GOST standard 51794-2008Google Scholar
  14. Gruber B (2012) GPS program updates. In: Proceedings of ION GNSS 2012, Nashville, TN, pp 521–537Google Scholar
  15. Hauschild A, Montenbruck O, Thoelert S, Erker S, Meurer M, Ashjaee J (2012) A multi-technique approach for characterizing the SVN49 signal anomaly—part 1: receiver tracking and IQ constellation. GPS Solut 16(1):19–28. doi: 10.1007/s10291-011-0203-2 CrossRefGoogle Scholar
  16. Hauschild A, Montenbruck O, Steigenberger P (2013) Short-term analysis of GNSS clocks. GPS Solut 17(3):295–307. doi: 10.1007/s10291-012-0278-4 CrossRefGoogle Scholar
  17. He L, Ge M, Wang J, Wickert J, Schuh H (2013) Experimental study on the precise orbit determination of the BeiDou navigation satellite system. Sensors 13(3):2911–2928. doi: 10.3390/s130302911 CrossRefGoogle Scholar
  18. Heng L (2012) Safe satellite navigation with multiple constellations: global monitoring of GPS and GLONASS signal-in-space anomalies. Ph.D. Dissertation, Stanford UniversityGoogle Scholar
  19. Heng L, Gao GX, Walter T, Enge P (2011a) Statistical characterization of GPS signal-in-space errors. In: Proceedings of ION ITM 2011, San Diego, CA, pp 312–319Google Scholar
  20. Heng L, Gao GX, Walter T, Enge P (2011b) Statistical characterization of GLONASS broadcast ephemeris errors. In: Proceedings of ION GNSS 2011, Portland, OR, pp 3109–3117Google Scholar
  21. Hu Z, Chen G, Zhang Q, Guo J, Su X, Li X, Zhao Q, Liu J (2013) An initial evaluation about BDS navigation message accuracy. In: Proceedings of China satellite navigation conference (CSNC) 2013. Lecture notes in electrical engineering 243, Springer, Berlin, pp 479–491. doi: 10.1007/978-3-642-37398-5_44
  22. IGS/RTCM (2013) RINEX—the receiver independent exchange format—version 3.02, IGS RINEX WG and RTCM-SC104, 3 April 2013Google Scholar
  23. Ishijima Y, Inaba N, Matsumoto A, Terada K, Yonechi H, Ebisutani H, Ukawa S, Okamoto T (2009) Design and development of the first Quasi-Zenith satellite attitude and orbit control system. In: Proceedings of IEEE aerospace conference, March 7–14 2009, Big Sky, MT, USAGoogle Scholar
  24. JAXA (2013) Quasi-Zenith satellite system navigation service interface specification for QZSS, IS-QZSS V1.5, 27 March 2013, Japan Aerospace Exploration AgencyGoogle Scholar
  25. Kishimoto M, Myojin E, Kawate K, Miyoshi M, Kogure S, Noda H (2012) Technical verification status of Quasi-Zenith satellite system. In: Proceedings of ION ITM 2012, Newport Beach, CA, pp 1223–1227Google Scholar
  26. Konrad A, Fischer H-D, Müller C, Oesterlin W (2007) Attitude & orbit control system for Galileo IOV. In: 17th IFAC symposium on automatic control in aerospaceGoogle Scholar
  27. Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12–28. doi: 10.1007/PL00012883 CrossRefGoogle Scholar
  28. Lucas Rodriguez R (2013) Galileo IOV status and results. In: Proceedings of ION GNSS 2013+, Nashville, TN, pp 3065–3093Google Scholar
  29. Malys S, Larezos M, Gottschalk S, Mobbs S, Winn B, Feess W, Mathon W (1997) The GPS accuracy improvement initiative. In: Proceedings of ION GPS 1997, pp 375–384Google Scholar
  30. Misra P, Enge P (2011) Global positioning system—signals, measurements, and performance. Ganga-Jamuna Press, LincolnGoogle Scholar
  31. Montenbruck O, Hauschild A (2013) Code biases in multi-GNSS point positioning. In: Proceedings of ION ITM 2013, San Diego, CA, pp 616–628Google Scholar
  32. Montenbruck O, Steigenberger P (2013) The BeiDou navigation message. J Glob Position Syst 12(1):1–12. doi: 10.5081/jgps.12.1.1 CrossRefGoogle Scholar
  33. Montenbruck O, Langley R, Steigenberger P (2013a) First live broadcast of GPS CNAV messages. GPS World 24(8):14–15Google Scholar
  34. Montenbruck O, Steigenberger P, Khachikyan R, Weber G, Langley RB, Mervart L, Hugentobler U (2013b) IGS-MGEX: preparing the ground for multi-constellation GNSS science. In: 4th international colloquium on scientific and fundamental aspects of the Galileo system, 4–6 December 2013, Prague, CZGoogle Scholar
  35. Montenbruck O, Hauschild A, Steigenberger P (2014) Differential code bias estimation using multi-GNSS observations and global ionosphere maps. In: Proceedings of ION ITM 2014, San Diego, CAGoogle Scholar
  36. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  37. Revnivykh S (2012a) GLONASS status and modernization. In: Proceedings of ION GNSS 2012, Nashville, TN, pp 3931–3949Google Scholar
  38. Revnivykh S (2012b) GLONASS ground control segment: orbit, clock, time scale and geodesy definition. In: Proceedings of ION GNSS 2012, Nashville, TN, pp 3931–3949Google Scholar
  39. Rippl M, Martini I, Belabbas B, Meurer M (2014) ARAIM operational performance tested in flight. In: Proceedings of ION ITM 2014, San Diego, CAGoogle Scholar
  40. RISDE (2008) Global navigation satellite system GLONASS—interface control document. Russian Institute of Space Device Engineering, version 5.1, MoscowGoogle Scholar
  41. Rizos Ch, Montenbruck O, Weber R, Weber G, Neilan R, Hugentobler U (2013) The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. In: Proceedings of ION Pacific PNT Meeting 2013, HonoluluGoogle Scholar
  42. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geodesy 81(12):781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  43. Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of compass GEO and IGSO satellites. J Geodesy 87(6):515–526. doi: 10.1007/s00190-013-0625-4 CrossRefGoogle Scholar
  44. Thoelert S, Meurer M, Erker S, Montenbruck O, Hauschild A, Fenton P (2012) A multi-technique approach for characterizing the SVN49 signal anomaly—part 2: chip shape analysis. GPS Solut 16(1):29–39. doi: 10.1007/s10291-011-0204-1 CrossRefGoogle Scholar
  45. Uhlemann M, Gendt G, Ramatschi M, Deng Z (2013) GFZ global multi-gnss network and data processing results. IAG Scientific Assembly 2013, September 1–6, 2013, PotsdamGoogle Scholar
  46. Wang W, Chen G, Guo S, Song X, Zhao Q (2013). A study on the Beidou IGSO/MEO satellite orbit determination and prediction of the different yaw control mode. In: Proceedings of China satellite navigation conference. Lecture notes in electrical engineering 245, Springer, Berlin, pp 31–40. doi: 10.1007/978-3-642-37407-4_3
  47. Warren DL, Raquet JF (2003) Broadcast vs. precise GPS ephemerides: a historical perspective. GPS Solut 7(3):151–156. doi: 10.1007/s10291-003-0065-3 CrossRefGoogle Scholar
  48. Yin H, Morton Y, Carroll M, Vinande E (2014) Performance analysis of L2 and L5 CNAV broadcast ephemeris for orbit calculation. In: Proceedings of ION ITM 2014, San Diego, CAGoogle Scholar
  49. Zhao Q, Guo J, Li M, Qu L, Hu Z, Shi Ch, Liu J (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geodesy 87(5):475–486. doi: 10.1007/s00190-013-0622-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Oliver Montenbruck
    • 1
    Email author
  • Peter Steigenberger
    • 1
  • André Hauschild
    • 1
  1. 1.German Space Operations CenterDeutsches Zentrum für Luft- und RaumfahrtWeßlingGermany

Personalised recommendations