GPS Solutions

, Volume 19, Issue 2, pp 287–295 | Cite as

Topo-Iberia project: CGPS crustal velocity field in the Iberian Peninsula and Morocco

  • J. Garate
  • J. Martin-Davila
  • G. Khazaradze
  • A. Echeverria
  • E. Asensio
  • A. J. Gil
  • M. C. de Lacy
  • J. A. Armenteros
  • A. M. Ruiz
  • J. Gallastegui
  • F. Alvarez-Lobato
  • C. Ayala
  • G. Rodríguez-Caderot
  • J. Galindo-Zaldívar
  • A. Rimi
  • M. Harnafi
Original Article

Abstract

A new continuous GPS network was installed under the umbrella of a research project called “Geociencias en Iberia: Estudios integrados de topografía y evolución 4D (Topo-Iberia)”, to improve understanding of kinematic behavior of the Iberian Peninsula region. Here we present a velocity field based on the analysis of the 4 years of data from 25 stations constituting the network, which were analyzed by three different analysis groups contributing to the project. Different geodetic software packages (GIPSY–OASIS, Bernese and GAMIT) as well as different approaches were used to estimate rates of present day crustal deformation in the Iberian Peninsula and Morocco. In order to ensure the consistency of the velocity fields determined by the three groups, the velocities obtained by each analysis center were transformed into a common Eurasia Reference Frame. After that, the strain rate field was calculated. The results put in evidence more prominent residual motions in Morocco and southernmost part of the Iberian Peninsula. In particular, the dilatation and shear strain rates reach their maximum values in the Central Betics and northern Alboran Sea. A small region of high shear strain rate is observed in the east-central part of the peninsula and another deformation focus is located around the Strait of Gibraltar and the Gulf of Cadiz.

Keywords

CGPS networks Iberia Morocco region Tectonic motion 

Supplementary material

10291_2014_387_MOESM1_ESM.doc (364 kb)
Supplementary material 1 (DOC 363 kb)

References

  1. Altamimi Z, Collilieux X, Legrand J et al (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112:B09401. doi:10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85:457–473. doi:10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  3. Argus DF, Gordon RG, DeMets C (2011) Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem Geophys Geosystems 12:Q11001. doi:10.1029/2011GC003751 CrossRefGoogle Scholar
  4. Avallone A, Selvaggi G, D’Anastasio E et al (2010) The RING network: improvement of a GPS velocity field in the central Mediterranean. Ann Geophys 53:39–54. doi:10.4401/ag-4549 Google Scholar
  5. Bianco G, Devoti R, Luceri V (2003) Combination of loosely constrained solutions. In: Richter B, Schwegmann W, Dick WR (eds) Proceedings of the IERS workshop on combination research and global geophysical fluids, pp 107–109Google Scholar
  6. Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107:1–9. doi:10.1029/2001JB000570 CrossRefGoogle Scholar
  7. Bruyninx C, Altamimi Z, Boucher C et al (2009) The European reference frame: maintenance and products. In: Drewes H (ed) Geodetic reference frames. Springer, Berlin, pp 131–136CrossRefGoogle Scholar
  8. Cardozo N, Allmendinger RWW (2009) SSPX: a program to compute strain from displacement/velocity data. Comput Geosci 35:1343–1357. doi:10.1016/j.cageo.2008.05.008 CrossRefGoogle Scholar
  9. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. User manual. Astron Institute, Univ Bern, vol 640, p 640Google Scholar
  10. Devoti R, Riguzzi F, Cuffaro M, Doglioni C (2008) New GPS constraints on the kinematics of the Apennines subduction. Earth Planet Sci Lett 273:163–174. doi:10.1016/j.epsl.2008.06.031 CrossRefGoogle Scholar
  11. Devoti R, Esposito A, Pietrantonio G et al (2011) Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary. Earth Planet Sci Lett 311:230–241. doi:10.1016/j.epsl.2011.09.034 CrossRefGoogle Scholar
  12. Dietrich R, Dach R, Engelhardt G et al (2001) ITRF coordinates and plate velocities from repeated GPS campaigns in Antarctica—an analysis based on different individual solutions. J Geod 74:756–766. doi:10.1007/s001900000147 CrossRefGoogle Scholar
  13. Echeverria A, Khazaradze G, Asensio E et al (2013) Crustal deformation in eastern Betics from CuaTeNeo GPS network. Tectonophysics 608:600–612. doi:10.1016/j.tecto.2013.08.020 CrossRefGoogle Scholar
  14. Estey LH, Meertens CM (1999) TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solut 3:42–49CrossRefGoogle Scholar
  15. Fadil A, Vernant P, McClusky S et al (2006) Active tectonics of the western Mediterranean: geodetic evidence for rollback of a delaminated subcontinental lithospheric slab beneath the Rif Mountains, Morocco. Geology 34:529–532. doi:10.1130/G22291.1 CrossRefGoogle Scholar
  16. Frontera T, Concha A, Blanco P et al (2012) DInSAR coseismic deformation of the May 2011 Mw 5.1 Lorca earthquake (southeastern Spain). Solid Earth 3:111–119. doi:10.5194/se-3-111-2012 CrossRefGoogle Scholar
  17. Herring T (2003) MATLAB tools for viewing GPS velocities and time series. GPS Solut 7:194–199. doi:10.1007/s10291-003-0068-0 CrossRefGoogle Scholar
  18. Herring TA, King RW, McClusky SC (2008) Introduction to GAMIT/GLOBK. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  19. Johnson HO, Agnew DC (1995) Monument motion and measurements of crustal velocities. Geophys Res Lett 22:2905–2908. doi:10.1029/95GL02661 CrossRefGoogle Scholar
  20. Kierulf HP, Plag HP, Bingley RM et al (2008) Comparison of GPS analysis strategies for high-accuracy vertical land motion. Phys Chem Earth 33:194–204. doi:10.1016/j.pce.2006.11.003 CrossRefGoogle Scholar
  21. Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res 104:2797. doi:10.1029/1998JB900033 CrossRefGoogle Scholar
  22. Marín-Lechado C, Galindo-Zaldívar J, Gil AJ et al (2010) Levelling profiles and a GPS network to monitor the active folding and faulting deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain). Sensors 10:3504–3518. doi:10.3390/s100403504 CrossRefGoogle Scholar
  23. Martínez-Díaz JJ, Bejar-Pizarro M, Álvarez-Gómez JA et al (2012) Tectonic and seismic implications of an intersegment rupture. Tectonophysics 546–547:28–37. doi:10.1016/j.tecto.2012.04.010 CrossRefGoogle Scholar
  24. McClusky S, Balassanian S, Barka A et al (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719. doi:10.1029/1999JB900351 CrossRefGoogle Scholar
  25. McClusky S, Reilinger R, Mahmoud S et al (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 155:126–138. doi:10.1046/j.1365-246X.2003.02023.x CrossRefGoogle Scholar
  26. Palano M, González PJ, Fernández J (2013) Strain and stress fields along the Gibraltar Orogenic Arc: constraints on active geodynamics. Gondwana Res 23:1071–1088. doi:10.1016/j.gr.2012.05.021 CrossRefGoogle Scholar
  27. Pérez-Peña A, Martín-Davila J, Gárate J et al (2010) Velocity field and tectonic strain in southern Spain and surrounding areas derived from GPS episodic measurements. J Geodyn 49:232–240. doi:10.1016/j.jog.2010.01.015 CrossRefGoogle Scholar
  28. Sanz de Galdeano C, Buforn E (2005) From strike-slip to reverse reactivation: the Crevillente fault system and seismicity in the Bullas-Mula area (Betic Cordillera, SE Spain). Geol Acta 3:241–250Google Scholar
  29. Scherneck H-G (1991) A parametrized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements. Geophys J Int 106:677–694. doi:10.1111/j.1365-246X.1991.tb06339.x CrossRefGoogle Scholar
  30. Stich D, Batllo J, Morales J et al (2003) Source parameters of the MW=6.1 1910 Adra earthquake (southern Spain). Geophys J Int 155:539–546. doi:10.1046/j.1365-246X.2003.02059.x CrossRefGoogle Scholar
  31. Wessel P, Smith WHF, Scharroo R et al (2013) Generic mapping tools: improved version released. EOS Trans Am Geophys Union 94:409–410. doi:10.1002/2013EO450001 CrossRefGoogle Scholar
  32. Williams SDP, Bock Y, Fang P et al (2004) Error analysis of continuous GPS position time series. J Geophys Res 109:B03412. doi:10.1029/2003JB002741 Google Scholar
  33. Zhang J, Bock Y, Johnson H et al (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res 102:18035. doi:10.1029/97JB01380 CrossRefGoogle Scholar
  34. Zumberge JF, Heflin MB, Jefferson DC et al (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005. doi:10.1029/96JB03860 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. Garate
    • 1
  • J. Martin-Davila
    • 1
  • G. Khazaradze
    • 2
  • A. Echeverria
    • 2
  • E. Asensio
    • 2
  • A. J. Gil
    • 3
    • 4
  • M. C. de Lacy
    • 3
    • 4
  • J. A. Armenteros
    • 3
    • 4
  • A. M. Ruiz
    • 3
    • 4
  • J. Gallastegui
    • 5
  • F. Alvarez-Lobato
    • 6
  • C. Ayala
    • 7
    • 8
  • G. Rodríguez-Caderot
    • 9
  • J. Galindo-Zaldívar
    • 10
  • A. Rimi
    • 11
  • M. Harnafi
    • 11
  1. 1.Real Instituto Observatorio ArmadaSan FernandoSpain
  2. 2.Dpto. Geodinámica i GeofísicaUniversity of BarcelonaBarcelonaSpain
  3. 3.Dpto. Ing. Cartográfica, Geodesia y FotogrametríaUniversity of JaenJaénSpain
  4. 4.CEACTierra. Centro de EstudiosAvanzados de Ciencias de la TierraJaénSpain
  5. 5.Dpto. GeologíaUniversity of OviedoOviedoSpain
  6. 6.Dpto. GeologíaUniversity of SalamancaSalamancaSpain
  7. 7.Instituto Geológico Minero de EspañaMadridSpain
  8. 8.Institute of Earth Sciences Jaume Almera-CSICBarcelonaSpain
  9. 9.Dpto. Astronomía y GeodesiaComplutense University of MadridMadridSpain
  10. 10.Dpto. GeodinámicaUniversidad de GranadaGranadaSpain
  11. 11.Institute ScientifiqueUniversity Mohammed V-AgdalRabatMorocco

Personalised recommendations