Advertisement

GPS Solutions

, Volume 19, Issue 1, pp 15–25 | Cite as

Galileo orbit determination using combined GNSS and SLR observations

  • S. Hackel
  • P. SteigenbergerEmail author
  • U. Hugentobler
  • M. Uhlemann
  • O. Montenbruck
Original Article

Abstract

The first two Galileo In-Orbit Validation satellites were launched in October 2011 and started continuous signal transmission on all frequencies in early 2012. Both satellites are equipped with two different types of clocks, namely rubidium clocks and hydrogen masers. Based on two test periods, the quality of the Galileo orbit determination based on Global Navigation Satellite System (GNSS) and Satellite Laser Ranging (SLR) observations is assessed. The estimated satellite clock parameters are used as quality indicator for the orbits: A bump at orbital periods in the Allan deviation indicates systematic errors in the GNSS-only orbit determination. These errors almost vanish if SLR observations are considered in addition. As the internal consistency is degraded by the combination, the offset of the SLR reflector is shifted by +5 cm, resulting in an improved orbit consistency as well as accuracy. Another approach to reduce the systematic errors of the GNSS-only orbit determination employs constraints for the clock estimates with respect to a linear model. In general, one decimeter orbit accuracy could be achieved.

Keywords

Satellite orbits Global Navigation Satellite System (GNSS) Satellite Laser Ranging (SLR) Galileo In-Orbit Validation (IOV) 

Notes

Acknowledgments

We would like to thank all local CONGO station hosts for their support. The International GNSS Service (IGS) is acknowledged for providing Galileo observation data in the framework of its Multi-GNSS EXperiment (MGEX).

References

  1. Appleby G, Otsubo T (2000) Comparison of SLR measurements and orbits with GLONASS and GPS microwave orbits. In: Proceedings of 12th international workshop on laser ranging, Matera, November 13–17Google Scholar
  2. Bar-Sever YE (1996) A new model for GPS yaw attitude. J Geod 70(1):714–723. doi: 10.1007/BF00867149 CrossRefGoogle Scholar
  3. Becker M, Zeimetz P, Schönemann E (2010) Antenna chamber calibrations and antenna phase center variations for new and existing GNSS signals. IGS Workshop 2010, NewcastleGoogle Scholar
  4. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–386Google Scholar
  5. Chiarini JC, Mathew C, Honold HP, Smith D (2008) A satellite for the Galileo mission. Del Re E, Ruggieri M (eds) Satellite communications and navigation systems, signals and communication technology. Springer, pp 109–132. doi: 10.1007/978-0-387-47524-0_9
  6. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365. doi: 10.1007/s00190-008-0281-2 CrossRefGoogle Scholar
  7. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, Bern, SwitzerlandGoogle Scholar
  8. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  9. ESA (2011) GIOVE Experimentation results: a success story. Technical report SP-1320, European Space Agency, NoordwijkGoogle Scholar
  10. Flohrer C (2008) Mutual validation of satellite-geodetic techniques and its impact on GNSS orbit modeling. Swiss Geodetic Commission, ZürichGoogle Scholar
  11. García Á, Píriz R, Fernández V, Navarro-Reyes D, González F, Hahn J (2008) GIOVE orbit and clock determination and prediction: experimentation results. In: Proceedings of ENC GNSS 2008Google Scholar
  12. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2007) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7):389–399. doi: 10.1007/s00190-007-0187-4 CrossRefGoogle Scholar
  13. Gendt G, Altamimi Z, Dach R, Söhne W, Springer T, The GGSP Prototype Team (2011) GGSP: realisation and maintenance of the Galileo terrestrial reference frame. Adv Space Res 47(2):174–185. doi: 10.1016/j.asr.2010.02.001 CrossRefGoogle Scholar
  14. Gurtner W, Estey L (2009) RINEX—the receiver independent exchange format version 3.01. Available at http://igscb.jpl.nasa.gov/igscb/data/format/ rinex301.pdf
  15. Hahn J, González F, Waller P, Navarro-Reyes D, Piriz R, Mozo A, Fernandez V, Cueto M, Tavella P, Sesia I (2007) GIOVE-A apparent clock assessment and results. In: Proceedings of 39th Annual Precise Time and Time Interval (PTTI) meeting, pp 95–114Google Scholar
  16. Hidalgo I, Mozo A, Navarro P, Piriz R, Navarro-Reyes D (2008a) Use of SLR observations to improve GIOVE-B orbit and clock determination. In: Schilliak S (ed) Proceedings of 16th International Workshop on Laser Ranging, vol 2, Space Research Centre, Polish Academy of Sciences, pp 71–84Google Scholar
  17. Hidalgo I, Piriz R, Mozo A, Tobias G, Tavella P, Sesia I, Crerretto G, Waller P, González F, Hahn J (2008b) Estimation and prediction of the GIOVE clocks. In: Proceedings 40th annual precise time and time interval (PTTI) meeting, pp 361–374Google Scholar
  18. Kirchner M, Schmidt R, Vilzmann J (2009) Results of GIOVE data processing to allow evaluation of principal system performance drivers. In: Proceedings European Navigation Conference—Global Navigation Satellite Systems, Naples, Italy. May 3–6, available at http://www.baynavtech.com/papers/results_GIOVE-data-processing.pdf
  19. Kouba J, Mireault Y (1996) IGS analysis coordinator report. In: Zumberge J, Urban M, Liu R, Neilan R (eds) International GPS Service for Geodynamics 1995 Annual Report. Jet Propulsion Laboratory, Pasadena, pp 45–76Google Scholar
  20. Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13(1):1–12. doi: 10.1007/s10291-008-0092-1 CrossRefGoogle Scholar
  21. Meindl M, Schaer S, Hugentobler U, Beutler G (2003) Tropospheric gradient estimation at CODE: results from global solutions. In: Proceedings of International Workshop on GPS Meteorology, pp 1-28-1–1-28-5Google Scholar
  22. Montenbruck O, Hauschild A, Hessels U (2011) Characterization of GPS/GIOVE sensor stations in the CONGO network. GPS Solut 15(3):193–205. doi: 10.1007/s10291-010-0182-8 CrossRefGoogle Scholar
  23. Montenbruck O, Steigenberger P, Schönemann E, Hauschild A, Hugentobler U, Dach R, Becker M (2012) Flight characterization of new generation GNSS satellite clocks. J Inst Navig 59(4):291–302CrossRefGoogle Scholar
  24. Navarro-Reyes D, Gonzalez F, Svehla D, Zandbergen R (2011) ILRS SLR mission support request for Galileo-101 and Galileo-102. Available at http://ilrs.gsfc.nasa.gov/docs/ILRS_MSR_Galileo_201106.pdf
  25. Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246. doi: 10.1029/95JB03048 CrossRefGoogle Scholar
  26. Pavlis E (2009) SLRF2008: the ILRS reference frame for SLR POD contributed to ITRF2008. In: Proceedings of 2009 Ocean Surface Topography Science Team Meeting, Seattle, June 22–24Google Scholar
  27. Pavlis E, Beard R (1996) The laser retroreflector experiment on GPS-35 and 36. In: Beutler G, Hein G, Melbourne W, Seeber G (eds) GPS trends in precise terrestrial, airborne and spaceborne applications, vol 115 of International Association of Geodesy Symposia, Springer, New York, Berlin, Heidelberg, pp 154–158. ISBN: 3-540-60872-9Google Scholar
  28. Pearlman M, Degnan J, Bosworth J (2002) The International Laser Ranging Service. Adv Space Res 30(2):125–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  29. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi: 10.1007/s10291-011-0248-2 CrossRefGoogle Scholar
  30. Rizos C, Montenbruck O, Weber R, Weber G, Neilan R, Hugentobler U (2013) The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. In: Proceedings of ION PNT 2013Google Scholar
  31. Robertson G, Kieffer R (2009) GIOVE-B satellite design and performance validation. In: Proceedings of ION GNSS 2009, pp 3008–3016Google Scholar
  32. Rodriguez-Solano C, Hugentobler U, Steigenberger P (2012) Impact of albedo radiation on GPS satellites. Geodesy for Planet Earth, vol 136 of International Association of Geodesy Symposia. Springer, pp 113–119. doi: 10.1007/978-3-642-20338-1_14
  33. Rooney E, Unwin M, Gatti G, Falcone M, Binda S, Malik M, Hannes D (2007) Giove-A in orbit testing results. In: Proceedings of ION GNSS 2007, pp 467–477Google Scholar
  34. Schönemann E, Springer T, Otten M, Becker M, Dow J (2007) GIOVE-A precise orbit determination from microwave and satellite laser ranging data—first perspectives for the Galileo constellation and its scientific use. In: Proceedings of First Colloquium on Scientific and Fundamental Aspects of the Galileo Programme 2007, Toulouse, France. October 1–4, available at http://ilrs.gsfc.nasa.gov/docs/2007_Schoenemann_Toulouse_paper.pdf
  35. Schönemann E, Springer TA, Otten M, Becker M (2009) Where is GIOVE-A exactly? GPS World 20(7):42–50Google Scholar
  36. Steigenberger P, Hauschild A, Montenbruck O, Hugentobler U (2013a) Galileo, Compass und QZSS: Aktueller Stand der neuen Satellitennavigationssysteme. zfv 138(1):53–59Google Scholar
  37. Steigenberger P, Hugentobler U, Montenbruck O, Hauschild A (2011) Precise orbit determination of GIOVE-B based on the CONGO network. J Geod 85(6):357–365. doi: 10.1007/s00190-011-0443-5 CrossRefGoogle Scholar
  38. Steigenberger P, Rodriguez-Solano C, Hugentobler U, Hauschild A, Montenbruck O (2013b) Orbit and clock determination of QZS-1 based on the CONGO network. J Inst Navig 60(1):31–40. doi: 10.1002/navi.27 CrossRefGoogle Scholar
  39. Uhlemann M, Ramatschi M, Gendt G (2012) GFZ’s global multi-GNSS network and first data processing results. IGS Workshop 2012Google Scholar
  40. Urschl C, Beutler G, Gurtner W, Hugentober U, Ploner M (2008) Orbit determination for GIOVE-A using SLR tracking data. In: Luck J, Moore CWP (eds) Extending the range. In: Proceedings of 15th International Workshop on Laser Ranging, pp 40–46Google Scholar
  41. Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S (2007) Contribution of SLR tracking data to GNSS orbit determination. Adv Space Res 39(10):1515–1523. doi: 10.1016/j.asr.2007.01.038 CrossRefGoogle Scholar
  42. Urschl C, Gurtner W, Hugentobler U, Schaer S, Beutler G (2005) Validation of GNSS orbits using SLR observations. Adv Space Res 36(3):412–417. doi: 10.1016/j.asr.2005.03.021 CrossRefGoogle Scholar
  43. Waller P, Gonzalez F, Binda S, Rodriguez D, Tobias G, Cernigliaro A, Sesia I, Tavella P (2010) Long-term performance analysis of GIOVE clocks. In: Proceedings of 42nd Annual Precise Time and Time Interval Meeting, pp 171–179Google Scholar
  44. Weber R (2012) IGS GNSS working group. In: Meindl M, Dach R, Jean Y (eds) International GNSS Service Technical Report 2011. Jet Propulsion Laboratory, Pasadena, pp 159–163Google Scholar
  45. Weinbach U, Schön S (2013) Improved GRACE kinematic orbit determination using GPS receiver clock modeling. GPS Solut 17(4):511–520. doi: 10.1007/s10291-012-0297-1 CrossRefGoogle Scholar
  46. Wu J, Wu S, Hajj G, Bertiger W, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18:91–98Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • S. Hackel
    • 1
  • P. Steigenberger
    • 1
    Email author
  • U. Hugentobler
    • 1
  • M. Uhlemann
    • 2
  • O. Montenbruck
    • 3
  1. 1.Institut für Astronomische und Physikalische Geodäsie (IAPG)Technische Universität München (TUM)MunichGermany
  2. 2.Helmholtz-Zentrum PotsdamDeutsches GeoForschungsZentrum (GFZ)PotsdamGermany
  3. 3.German Space Operations Center (GSOC)German Aerospace Center (DLR)OberpfaffenhofenGermany

Personalised recommendations