GPS Solutions

, Volume 18, Issue 2, pp 283–296 | Cite as

Robustness of GNSS integer ambiguity resolution in the presence of atmospheric biases

  • Bofeng Li
  • Sandra Verhagen
  • Peter J. G. Teunissen
Original Article

Abstract

Both the underlying model strength and biases are two crucial factors for successful integer GNSS ambiguity resolution (AR) in real applications. In some cases, the biases can be adequately parameterized and an unbiased model can be formulated. However, such parameterization will, as trade-off, reduce the model strength as compared to the model in which the biases are ignored. The AR performance with the biased model may therefore be better than with the unbiased model, if the biases are sufficiently small. This would allow for faster AR using the biased model, after which the unbiased model can be used to estimate the remaining unknown parameters. We assess the bias-affected AR performance in the presence of tropospheric and ionospheric biases and compare it with the unbiased case. As a result, the maximum allowable biases are identified for different situations where CORS, static and kinematic baseline models are considered with different model settings. Depending on the size of the maximum allowable bias, a user may decide to use the biased model for AR or to use the unbiased model both for AR and estimating the other unknown parameters.

Keywords

Ambiguity resolution Bias-affected success rate Tropospheric biases Ionospheric biases Ps-LAMBDA 

References

  1. Allison T (1991) Multi-observable processing techniques for precise relative positioning. In ION GPS-91, Albuquerque, NM, pp 715–726Google Scholar
  2. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. Astronomical Institute, University of BernGoogle Scholar
  3. de Jonge PJ, Tiberius CCJM (1996) The LAMBDA method for integer ambiguity estimation: implementation aspects, LGR-series, No. 12. Technical report, Delft University of TechnologyGoogle Scholar
  4. de Jonge PJ, Teunissen PJG, Jonkman N, Joosten P (2000) The distributional dependence of the range on triple frequency GPS ambiguity resolution. In ION-NTM 2000, Anaheim, CA, pp 605–612Google Scholar
  5. Feng Y (2008) GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. J Geodesy 82:847–862CrossRefGoogle Scholar
  6. Goad CC (1992) Robust techniques for determining GPS phase ambiguities. In 6th Geodesy Symposium on Satellite Positioning, Columbus, Ohio, pp 245–254Google Scholar
  7. Hatch R (1982) The synergism of GPS code and carrier measurements. In 3rd Int Geod Sympon Satellite Doppler Positioning, 2:1213–1231, Las Vegas, New MexicoGoogle Scholar
  8. Hatch R, Jung J, Enge P, Pervan B (2000) Civilian GPS: the benefits of three frequencies. GPS Solut 3(4):1–9CrossRefGoogle Scholar
  9. Henkel P, Günther C (2010) Partial integer decorrelation: optimum trade-off between variance reduction and bias amplification. J Geodesy 84:51–63CrossRefGoogle Scholar
  10. Joosten P, Irsigler M (2003). GNSS ambiguity resolution in the presence of multipath. In the European navigation conference GNSS 2002, Graz, AustriaGoogle Scholar
  11. Joosten P, Teunissen PJG (2001) On the error sensitivity of the GPS ambiguity success rate. In KIS 2001, pp 409–414, Banff, CanadaGoogle Scholar
  12. Kubo N, Yasuda A (2003) How multipath error influences on ambiguity resolution. In Proceedings of ION GNSS 2003, PortlandGoogle Scholar
  13. Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, New YorkGoogle Scholar
  14. Li B, Teunissen PJG (2011) High dimensional integer ambiguity resolution: a first comparison between LAMBDA and Bernese. J Navig 64(S1):S192–S210Google Scholar
  15. Li B, Feng Y, Shen Y (2010a) Three carrier ambiguity resolution: distance-independent performance demonstrated using semi-generated triple frequency GPS signals. GPS Solut 14(2):177–184CrossRefGoogle Scholar
  16. Li B, Shen Y, Feng Y (2010b) Fast GNSS ambiguity resolution as an ill-posed problem. J Geodesy 84(11):683–698CrossRefGoogle Scholar
  17. Li B, Feng Y, Shen Y, Wang C (2010c) Geometry-specified troposphere decorrelation for subcentimeter real-time Kinematic solutions over long baselines. J Geophys Res, 115(B11):B11404. doi:10.1029/2010JB007549
  18. Liu GC, Lachapelle G (2002) Ionosphere weighted GPS cycle ambiguity resolution. In ION National Technical Meeting, San Diego, CA, pp 1–5Google Scholar
  19. Nardo A, Huisman L, Teunissen PJG (2011) GPS+GLONASS CORS processing: the Asian-Pacific APREF case. In IUGG 2011, Melbourne, AustraliaGoogle Scholar
  20. Odijk D (2000) Weighting ionospheric corrections to improve fast GPS positioning over medium distances. In ION GPS 2000, Salt Lake City, UT, pp 1113–1123Google Scholar
  21. Odijk D (2002) Fast precise GPS positioning in the presence of ionospheric delays. Ph.D. thesis, Publications on Geodesy, 52, Netherlands Geodetic Commission, DelftGoogle Scholar
  22. Schaffrin B, Bock Y (1988) A unified scheme for processing GPS dual-band phase observations. Bull Geodesique 62:142–160CrossRefGoogle Scholar
  23. Teunissen PJG (1993) Least squares estimation of the integer GPS ambiguities. In Invited lecture, section IV theory and methodology, IAG General Meeting, BeijingGoogle Scholar
  24. Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geodesy 70:65–82CrossRefGoogle Scholar
  25. Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geodesy 73(11):587–593CrossRefGoogle Scholar
  26. Teunissen PJG (2001) Integer estimation in the presence of biases. J Geodesy 75:399–407CrossRefGoogle Scholar
  27. Teunissen PJG, Joosten P, Tiberius CCJM (2000) Bias robustness of GPS ambiguity resolution. In ION GPS 2000, Salt Lake City, pp 104–112Google Scholar
  28. Teunissen PJG, Joosten P, Tiberius CCTM (2002) A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution. In ION GPS 2002, Portland, OR, pp 2799–2808Google Scholar
  29. Verhagen S, Joosten P (2003) Algorithms for design computations for integrated GPS—Galileo. In the European navigation conference GNSS 2003, Graz, AustriaGoogle Scholar
  30. Verhagen S, Li B (2012) LAMBDA software package: Matlab implementation, version 3.0. Delft University of Technology and Curtin University, Perth, AustraliaGoogle Scholar
  31. Verhagen S, Odijk D, Boon F, López-Almansa J (2007) Reliable multi-carrier ambiguity resolution in the presence of multipath. In ION GNSS 2007, pp 339–350, Forth Worth, TXGoogle Scholar
  32. Verhagen S, Li B, Teunissen PJG (2013) Ps-LAMBDA: ambiguity success rate evaluation software for interferometric applications. Comput Geosci 54:361–376CrossRefGoogle Scholar
  33. Vollath U, Birnbach S, Landau H, Fraile-Ordoñez JM, Martín-Neira M (1998) Analysis of three-carrier ambiguity resolution (TCAR) technique for precise relative positioning in GNSS-2. In ION GPS-98, Nashville, TN, pp 417–426Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bofeng Li
    • 1
    • 2
  • Sandra Verhagen
    • 3
  • Peter J. G. Teunissen
    • 1
    • 2
    • 3
  1. 1.College of Surveying and Geo-InformaticsTongji UniversityShanghaiPeople’s Republic of China
  2. 2.GNSS Research CentreCurtin UniversityPerthAustralia
  3. 3.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations