GPS Solutions

, Volume 18, Issue 2, pp 219–230 | Cite as

Assessing antenna field of view and receiver clocks of COSMIC and GRACE satellites: lessons for COSMIC-2

  • Tzu-Pang Tseng
  • Kefei Zhang
  • Cheinway HwangEmail author
  • Urs Hugentobler
  • Chuan-Sheng Wang
  • Suelynn Choy
  • Yi-Shan Li
Original Article


We provide suggestions for the approved COSMIC-2 satellite mission regarding the field of view (FOV) and the clock stability of its future GNSS receiver based on numerical analyses using COSMIC GPS data. While the GRACE GPS receiver is mounted on the zenith direction, the precise orbit determination (POD) antennas of COSMIC are not. The COSMIC antenna design results in a narrow FOV and a reduction in the number of GPS observations. To strengthen the GPS geometry, GPS data from two POD antennas of COSMIC are used to estimate its orbits. The phase residuals of COSMIC are at the centimeter level, compared to the millimeter level of GRACE. The receiver clock corrections of COSMIC and GRACE are at the microsecond and nanosecond levels, respectively. The clock spectra of COSMIC at the frequencies of 0–0.005 Hz contain significant powers, indicating potential systematic errors in its clock corrections. The clock stability, expressed by the Allan deviation, of COSMIC ranges from 10−9 to 10−11 over 1 to 104 s, compared to 10−12 to 10−14 for GRACE. Compared to USO-based clock of GRACE, the clock of COSMIC is degraded in its stability and is linked to the reduction of GPS data quality. Lessons for improvement of COSMIC-2 over COSMIC in FOV and receiver clock stability are given.


Clock stability COSMIC Field of view GPS Precise orbit determination 



This research is supported by National Space Organization, Taiwan (contract no. NSPO-S-100011), Australia Space Research Program (ASRP) (Grant No. ASRP2, RMIT), and National Science Council (contract no. 100-2221-E-009-132-MY3). We thank CODE for providing the precise GPS orbit, clock, and earth rotation parameters and are grateful to the comments of reviewers to enhance the quality of the paper.


  1. Allan DW (1987) Time and frequency (time-domain) characterization, estimation, and prediction of precision clock and oscillators. IEEE Trans Ultrason Ferroelect Freq Contr, vol.uffc-34(6)Google Scholar
  2. Bettadpur S (2012) GRACE Product Specification Document, Rev. 4.6. Technical Report GRACE 327-720 (CSR-GR-03-02), Center for Space Research, The University of Texas at AustinGoogle Scholar
  3. Beyerle G, Schmidt T, Michalak G, Heise S, Wickert J, Reigber C (2005) GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32:L13806. doi: 10.1029/2005GLo23109 CrossRefGoogle Scholar
  4. Bock H, Jäggi A, Meyer U, Dach R, Beutler G (2011) Impact of GPS antenna phase center variations on precise orbits of the GOCE satellite. Adv Space Res 47(11):1885–1893. doi: 10.1016/j.asr.2011.01.017 CrossRefGoogle Scholar
  5. Dach R, Schildknecht T, Hugentobler U, Bernier L-G, Dudle G (2006) Continuous geodetic time transfer analysis methods. IEEE Trans Ultrason Ferroelect Freq Contr 53:1250–1259CrossRefGoogle Scholar
  6. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software—Version 5.0, Astronomical Institute. University of Bern, SwitzerlandGoogle Scholar
  7. Delporte J, Mercier F, Laurichesse D, Galy O (2008) GPS carrier-phase time transfer using single-difference integer ambiguity resolution. Int J Navig Obs. doi: 10.1155/2008/273785 Google Scholar
  8. Esterhuizen S, Franklin G, Hurst K, Mannucci A, Meehan T, Webb F, Young L (2009) TriG—A GNSS precise orbit and radio occultation space receiver. 22nd International meeting of the satellite division of the institute of navigation, Savannah, GA, September 22-25, page(s):1442–1446Google Scholar
  9. Fong CJ, Yang SK, Chu CH, Huang CY, Yeh JJ, Lin CT, Kuo TC, Liu TY, Yen NL, Chen SS, Kuo YH, Liou YA, Chi S (2008) FORMOSAT-3/COSMIC constellation spacecraft system performance: after 1 year in orbit. IEEE Trans Geosci Remote Sens 46:3380–3394CrossRefGoogle Scholar
  10. Fong CJ, Whiteley D, Yang E, Cook K, Chu V, Schreiner B, Ector D, Wilczynski P, Liu TY, Yen N (2011) Space and ground segment performance and lessons learned of the FORMOSAT-3/COSMIC mission: 4 years in orbit. Atmos Meas Tech 4:1115–1132. doi: 10.5194/amt-4-1115-2011 CrossRefGoogle Scholar
  11. Galleani L (2008) Detection of changes in clock noise using the time-frequency spectrum. Metrologia 45:S143–S153. doi: 10.1088/0026-1394/45/6/S20 CrossRefGoogle Scholar
  12. Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice. Springer Wien New York, ISBN 3-211-83472-9Google Scholar
  13. Hwang C, Tseng TP, Lin T, Švehla D, Schreiner B (2009) Precise orbit determination for the FORMOSAT-3/COSMIC satellite mission GPS. J Geod 83:477–489. doi: 10.1007/s00190-008-0256-3 CrossRefGoogle Scholar
  14. Hwang C, Tseng TP, Lin T, Švehla D, Hugentobler U, Chao BF (2010) Quality assessment of FORMOSAT-3/COSMIC and GRACE GPS observables: analysis of multipath, ionospheric delay and phase residual in orbit determination. GPS Solut 14(1):121–131. doi: 10.1007/s10291-009-0145-0 CrossRefGoogle Scholar
  15. Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10):1612–1619. doi: 10.1016/j.asr.2007.03.012 CrossRefGoogle Scholar
  16. Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beulter G (2009) Phase center modeling for LEO GPS receiver antenna and its impact on precise orbit determination. J Geod 83:1145–1162. doi: 10.1007/s00190-009-0333-2 CrossRefGoogle Scholar
  17. Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16):1829. doi: 10.1029/2003GL017639 CrossRefGoogle Scholar
  18. Kuang D, Bertiger W, Desai S, Haines B, Iijima B, Meehan T (2008) Precise orbit determination for COSMIC Satellites using GPS data from two on-board Antennas. Proceedings of the IEEE/ION PLANS, pp 720–730, May 6–8, Monterey, CaliforniaGoogle Scholar
  19. Montenbruck O, Garcia-Fernandez M, Williams J (2006) Performance comparison of semicodeless GPS receivers for LEO satellites. GPS Solut 10:249–261. doi: 10.1007/s10291-006-0025-9 CrossRefGoogle Scholar
  20. Montenbruck O, Garcia-Fernandez M, Yoon Y, Schön S, Jäggi A (2009) Antenna phase center calibration for precise positioning of LEO satellites. GPS Solut 13:23–34. doi: 10.1007/s10291-008-0094-z CrossRefGoogle Scholar
  21. Riley WJ (2003) Techniques for frequency stability analysis. IEEE International Frequency Control Symposium, Tampa, FL, May 4Google Scholar
  22. Schreiner W, Rocken C, Sokolovskiy S, Hunt D (2010) Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single- and double-difference atmospheric excess phase processing. GPS Solut 14:13–22. doi: 10.1007/s10291-009-0132-5 CrossRefGoogle Scholar
  23. Švehla D, Rothacher M (2003) Kinematic and reduced–dynamic precise orbit determination of low earth orbiters. Adv Geosci 1:47–56CrossRefGoogle Scholar
  24. Tseng TP, Hwang C, Yang SK (2012) Assessing attitude error of FORMOSAT-3/COSMIC satellites and its impact on orbit determination. Adv Space Res 49(9):1301–1312. doi: 10.1016/j.asr.2012.02.007 CrossRefGoogle Scholar
  25. Yeh TK, Hwang C, Xu G, Wang CS, Lee CC (2009) Determination of global positioning system (GPS) receiver clock errors: impact on positioning accuracy. Meas Sci Technol 20(7):1–7. doi: 10.1088/0957-0233/20/7/075105 CrossRefGoogle Scholar
  26. Yeh TK, Chen CH, Xu G, Wang SC, Chen KH (2012) The impact on the positioning accuracy of the frequency reference of a GPS receiver. Surv Geophys. doi: 10.1007/s10712-012-9202-2 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tzu-Pang Tseng
    • 1
    • 3
  • Kefei Zhang
    • 3
  • Cheinway Hwang
    • 2
    Email author
  • Urs Hugentobler
    • 4
  • Chuan-Sheng Wang
    • 3
  • Suelynn Choy
    • 3
  • Yi-Shan Li
    • 2
  1. 1.GPS Science and Application Research CenterNational Central UniversityJhongli CityTaiwan
  2. 2.Department of Civil EngineeringNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.SPACE Research CentreRoyal Melbourne Institute of Technology (RMIT) UniversityMelbourneAustralia
  4. 4.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany

Personalised recommendations