GPS Solutions

, Volume 17, Issue 3, pp 327–335

Evaluating the effect of the global ionospheric map on aiding retrieval of radio occultation electron density profiles

Original Article

Abstract

Radio occultation (RO) has been proven to be a powerful technique for ionospheric electron density profile (EDP) retrieval. The Abel inversion currently used in RO EDP retrieval has degraded performance in regions with large horizontal gradients because of an assumption of spherical symmetry as indicated by many studies. Some alternative methods have been proposed in the past; the global ionospheric map (GIM)-aided Abel inversion is most frequently studied. Since the number of RO observations will likely increase rapidly in the near future, it is worthwhile to continue to improve retrieval method. In this study, both the simulations and the real data test have been done to evaluate the GIM-aided Abel inversion method. It is found that the GIM-aided Abel inversion can significantly improve upon the standard Abel inversion in either the F or the E region if an accurate GIM is available. However, the current IGS GIM does not appear accurate enough to improve retrieval results significantly, because of the spherical symmetry assumption and sparse global navigation satellite system (GNSS) stations used in its creation. Generating accurate GIM based on dense GNSS network to aid the Abel inversion might be an alternative method.

Keywords

Radio occultation Abel GNSS GIM Ionosphere FORMOSAT-3/COSMIC 

References

  1. Anthes RA (2011) Exploring Earth’s atmosphere with radio occultation: contributions to weather, climate and space weather. Atmos Meas Tech 4:1077–1103. doi:10.5194/amt-4-1077-2011 CrossRefGoogle Scholar
  2. Aragon-Angel A, Hernandez-Pajares M, Juan JM, Sanz J (2010) Improving the Abel transform inversion using bending angles from FORMOSAT-3/COSMIC. GPS Solut 14(1):23–33. doi:10.1007/s10291-009-0147-y CrossRefGoogle Scholar
  3. Aragon-Angel A, Liou YA, Lee CC, Reinisch BW, Hernández-Pajares M, Juan JM, Sanz JM (2011) Improvement of retrieved FORMOSAT-3/COSMIC electron densities validated by ionospheric sounder measurements at Jicamarca. Radio Sci 46:RS5001. doi:10.1029/2010RS004578
  4. Garcia-Fernandez M, Hernandez-Pajares M, Juan JM, Sanz JM (2003) Improvement of ionospheric electron density estimation with GPSMET occultations using Abel inversion and VTEC information. J Geophys Res 108(A9):1338. doi:10.1029/2003JA009952 CrossRefGoogle Scholar
  5. Garcia-Fernandez M, Hernandez-Pajares M, Juan JM, Sanz JM (2005) Performance of the improved Abel transform to estimate electron density profiles from GPS occultation data. GPS Solut 9(2):105–110. doi:10.1007/s10291-005-0139-5 CrossRefGoogle Scholar
  6. Hajj GA, Ibanez-Meier R, Kursinski ER, Romans LJ (1994) Imaging the ionosphere with the global positioning system. Int J Imaging Syst Technol 5:174–184CrossRefGoogle Scholar
  7. Hajj GA, Romans LJ (1998) Ionospheric electron density profiles obtained with the global positioning system: results from the GPS/MET experiment. Radio Sci 33:175–190CrossRefGoogle Scholar
  8. Hernández-Pajares M, Juan JM, Sanz JM (2000) Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys Res Lett 22:2473–2476. doi:10.1029/2000GL000032 CrossRefGoogle Scholar
  9. Hernández-Pajares M, Juan JM, Sanz JM, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83:263–275. doi:10.1007/s00190-008-0266-1 CrossRefGoogle Scholar
  10. Hocke K, Igarashi K (2002) Electron density in the F region derived from GPS/MET radio occultation data and comparison with IRI. Earth Planets Space 54:947–954Google Scholar
  11. Hysell DL (2007) Inverting ionospheric radio occultation measurements using maximum entropy. Radio Sci 42:RS4022. doi:10.1029/2007RS003635
  12. Jakowski N (2005) Ionospheric GPS radio occultation measurements on board CHAMP. GPS Solut 9:88–95. doi:10.1007/s10291-005-0137-7 CrossRefGoogle Scholar
  13. Jakowski N, Wehrenpfennig A, Heise A, Reigber C, Lühr H, Grunwaldt L, Meehan TK (2002) GPS radio occultation measurements of the ionosphere from CHAMP: early results. Geophys Res Lett 29(10):1457. doi:10.1029/2001GL014364 CrossRefGoogle Scholar
  14. Krankowski A, Zakharenkova I, Krypiak-Gregorczyk A, Shagimuratov I, Wielgosz P (2011) Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data. J Geod 85(12):949–964. doi:10.1007/s00190-011-0481-z CrossRefGoogle Scholar
  15. Kulikov I, Mannucci AJ, Pi X, Raymond C, Hajj GA (2011) Electron density retrieval from occulting GNSS signals using a gradient-aided inversion technique. Adv Space Res 47(2):289–295CrossRefGoogle Scholar
  16. Leitinger R, Radicella S, Nava B (2002) Electron density models for assessment studies—new developments. Acta Geodet Geophys Hung 37:183–193CrossRefGoogle Scholar
  17. Liu JY, Lee CC, Yang JY, Chen CC, Reinisch BW (2010a) Electron density profiles in the equatorial ionosphere observed by the FORMOSAT-3/COSMIC and a Digisonde at Jicamarca. GPS Solut 14:75–81. doi:10.1007/s10291-009-0150-3 CrossRefGoogle Scholar
  18. Liu JY, Lin CY, Lin CH, Tsai HF, Solomon SC, Sun YY, Lee IT, Schreiner WS, Kuo YH (2010b) Artificial plasma cave in the low-latitude ionosphere results from the radio occultation inversion of the FORMOSAT-3/COSMIC. J Geophys Res 115:A07319. doi:10.1029/2009JA015079 CrossRefGoogle Scholar
  19. Rocken C, Kuo YH, Schreiner WS, Hunt DC, Sokolovskiy SV, McCormick C (2000) COSMIC system description. Terr Atmos Ocean Sci 11(1):21–52Google Scholar
  20. Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34(4):949–966. doi:10.1029/1999RS900034 CrossRefGoogle Scholar
  21. Schreiner WS, Rocken C, Sokolovskiy SV, Syndergaard S, Hunt DC (2007) Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys Res Lett 34:L04808. doi:10.1029/2006GL027557 CrossRefGoogle Scholar
  22. Straus PR (2007) Ionospheric climatology derived from GPS occultation observations made by the ionospheric occultation experiment. Adv Space Res 39:793–802. doi:10.1016/j.asr.2006.08.009 CrossRefGoogle Scholar
  23. Tsai LC, Cheng KF, Liu CH (2011) GPS radio occultation measurements on ionospheric electron density from low earth orbit. J Geod 85(12):941–948. doi:10.1007/s00190-011-0476-9 CrossRefGoogle Scholar
  24. Tsai LC, Tsai WH (2004) Improvement of GPS/MET ionospheric profiling and validation using the Chung-Li Ionosonde measurements and the IRI model. Terr Atmos Ocean Sci 15:589–607Google Scholar
  25. Yue X, Schreiner WS, Lei J, Sokolovskiy SV, Rocken C, Hunt DC, Kuo YH (2010) Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann Geophys 28:217–222. doi:10.5194/angeo-28-217-2010 CrossRefGoogle Scholar
  26. Yue X, Schreiner WS, Rocken C, Kuo YH (2011a) Evaluation of the orbit altitude electron density estimation and its effect on the Abel inversion from radio occultation measurements. Radio Sci 46:RS1013. doi:10.1029/2010RS004514
  27. Yue X, Schreiner WS, Lin YC, Rocken C, Kuo YH, Zhao B (2011b) Data assimilation retrieval of electron density profiles from radio occultation measurements. J Geophys Res 116:A03317. doi:10.1029/2010JA015980 CrossRefGoogle Scholar
  28. Yue X, Schreiner WS, Rocken C, Kuo YH, Lei J (2012a) Artificial ionospheric wave Number 4 structure below the F2 region due to the Abel retrieval of radio occultation measurements. GPS Solut 16(1):1–7. doi:10.1007/s10291-010-0201-9 CrossRefGoogle Scholar
  29. Yue X, Schreiner WS, Kuo YH (2012b) A feasibility study of the radio occultation electron density retrieval aided by a global ionospheric data assimilation model. J Geophys Res 117:A08301. doi:10.1029/2011JA017446 Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Xinan Yue
    • 1
  • William S. Schreiner
    • 1
  • Ying-Hwa Kuo
    • 1
  1. 1.COSMIC Program OfficeUniversity Corporation for Atmospheric ResearchBoulderUSA

Personalised recommendations