GPS Solutions

, Volume 17, Issue 2, pp 237–246 | Cite as

Evaluation of the ITRF2008 GPS vertical velocities using satellite antenna z-offsets

  • X. CollilieuxEmail author
  • R. Schmid
Original Article


We develop a method to evaluate the terrestrial reference frame (TRF) scale rate error using Global Positioning System (GPS) satellite antenna phase center offset (APCO) parameters and apply it to ITRF2008. We search for the TRF in which z-APCO parameters have the smallest drift. In order to provide realistic error bars for the z-APCO drifts, we pay attention to model periodic variations and auto-correlated noise processes in the z-APCO time series. We will show that the GPS scale rate with respect to a frame is, as a first approximation, proportional to the estimated mean z-APCO trend if that frame is used to constrain station positions. Thus, an ITRF2008 scale rate error between −0.27 and −0.06 mm/yr depending on the GPS analysis center can be estimated, which demonstrates the high quality of the newly constructed ITRF2008. We will also demonstrate that the traditional estimates of the GPS scale rate from 7-parameter similarity transformations are consistent with our newly derived GPS scale rates with respect to ITRF2008 within two sigmas. We find using International GNSS Service (IGS) products that the traditional approach is relevant for scale rate determination even if some of the z-APCO values supplied by the IGS were not simultaneously calibrated. As the scale rate is related to the accuracy of vertical velocities, our estimates supply a conservative evaluation that can be used for error budget computation.


Terrestrial reference frame GPS Satellite antenna phase center Space geodetic techniques Kalman filter 



This work was partly funded by the Centre National d’Etudes Spatiales (CNES) through a TOSCA grant. We thank the contributing IGS ACs for providing their solutions. We are grateful to two anonymous reviewers for their constructive comments. We also thank David Coulot for his careful reading of the manuscript.


  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107(B10):L2214. doi: 10.1029/2001JB000561
  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  3. Argus DF (2007) Defining the translational velocity of the reference frame of Earth. Geophys J Int 169(3):830–838. doi: 10.1111/j.1365-246X.2007.03344.x CrossRefGoogle Scholar
  4. Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107(B7):2145. doi: 10.1029/2001JB000570 Google Scholar
  5. Bonnefond P, Haines BJ, Watson C (2011) In situ absolute calibration and validation: a link from coastal to open-ocean altimetry. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 259–296. doi: 10.1007/978-3-642-12796-0_11 CrossRefGoogle Scholar
  6. Bouin M-N, Wöppelmann G (2010) Land motion estimates from GPS at tide gauges: a geophysical evaluation. Geophys J Int 180(1):193–209. doi: 10.1111/j.1365-246X.2009.04411.x CrossRefGoogle Scholar
  7. Cardellach E, Elósegui P, Davis JL (2007) Global distortion of GPS networks associated with satellite antenna model errors. J Geophys Res 112:B07405. doi: 10.1029/2006JB004675 CrossRefGoogle Scholar
  8. Collilieux X, Wöppelmann G (2011) Global sea-level rise and its relation to the terrestrial reference frame. J Geod 85(1):9–22. doi: 10.1007/s00190-010-0412-4 CrossRefGoogle Scholar
  9. Collilieux X, Altamimi Z, Coulot D, Ray J, Sillard P (2007) Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J Geophys Res 112:B12403. doi: 10.1029/2007JB004933 CrossRefGoogle Scholar
  10. Collilieux X, Métivier L, Altamimi Z, van Dam T, Ray J (2011) Quality assessment of GPS reprocessed terrestrial reference frame. GPS Solut 15(3):219–231. doi: 10.1007/s10291-010-0184-6 CrossRefGoogle Scholar
  11. Degnan JJ, Pavlis EC (1994) Laser ranging to GPS satellites with centimeter accuracy. GPS World 5(9):62–70Google Scholar
  12. Dow JM, Neilan RE, Rizos C (2009) The international GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  13. Ferland R, Piraszewski M (2009) The IGS-combined station coordinates, earth rotation parameters and apparent geocenter. J Geod 83(3–4):385–392. doi: 10.1007/s00190-008-0295-9 CrossRefGoogle Scholar
  14. Ge M, Gendt G, Dick G, Zhang FP, Reigber C (2005) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32:L06310. doi: 10.1029/2004GL022224 CrossRefGoogle Scholar
  15. Haines B, Bar-Sever Y, Bertiger W, Desai S, Willis P (2004) One-centimeter orbit determination for Jason-1: new GPS-based strategies. Mar Geod 27(1):299–318. doi: 10.1080/01490410490465300 CrossRefGoogle Scholar
  16. Kogan MG, Steblov GM (2008) Current global plate kinematics from GPS (1995–2007) with the plate-consistent reference frame. J Geophys Res 113:B04416. doi: 10.1029/2007JB005353 CrossRefGoogle Scholar
  17. Plag HP, Pearlman M (eds) (2009) Global geodetic observing system. Meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin. ISBN: 978-3-642-02686-7, 332 p. doi: 10.1007/978-3-642-02687-4
  18. Ray RD, Beckley BD, Lemoine FG (2010) Vertical crustal motion derived from satellite altimetry and tide gauges, and comparisons with DORIS measurements. Adv Space Res 45(12):1510–1522. doi: 10.1016/j.asr.2010.02.020 CrossRefGoogle Scholar
  19. Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B10 5411. doi: 10.1029/2005JB004051 CrossRefGoogle Scholar
  20. Schmid R, Rothacher M (2003) Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites. J Geod 77(7–8):440–446. doi: 10.1007/s00190-003-0339-0 CrossRefGoogle Scholar
  21. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  22. Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res 109:B03412. doi: 10.1029/2003JB002741 CrossRefGoogle Scholar
  23. Wöppelmann G, Martín Míguez B, Bouin M-N, Altamimi Z (2007) Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Global Planet Change 57(3–4):396–406. doi: 10.1016/j.gloplacha.2007.02.002 CrossRefGoogle Scholar
  24. Wöppelmann G, Letetrel C, Santamaría A, Bouin M-N, Collilieux X, Altamimi Z, Williams SDP, Martín Míguez B (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36:L12607. doi: 10.1029/2009GL038720 CrossRefGoogle Scholar
  25. Wu X, Collilieux X, Altamimi Z, Vermeersen B, Gross RS, Fukumori I (2011) Accuracy of the international terrestrial reference frame origin and earth expansion. Geophys Res Lett 38:L13304. doi: 10.1029/2011GL047450 Google Scholar
  26. Zhu SY, Massmann F-H, Yu Y, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76(11–12):668–672. doi: 10.1007/s00190-002-0294-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.IGN, LAREG/GRGSMarne La Vallée Cedex 2France
  2. 2.GRGSMarne La Vallée Cedex 2France
  3. 3.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany

Personalised recommendations