GPS Solutions

, Volume 17, Issue 2, pp 211–222 | Cite as

Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system

  • Oliver MontenbruckEmail author
  • André Hauschild
  • Peter Steigenberger
  • Urs Hugentobler
  • Peter Teunissen
  • Shinichi Nakamura
Original Article


An initial characterization and performance assessment of the COMPASS/BeiDou-2 regional navigation system is presented. Code and carrier phase measurements on up to three frequencies have been collected in March 2012 with a small regional network of monitoring stations. The signal and measurement quality are analyzed and compared with the Japanese Quasi Zenith Satellite System. A high level of stability is demonstrated for the inter-frequency carrier phase biases, which will facilitate the application of triple-frequency undifferenced ambiguity resolution techniques in future precise point positioning applications. The performance of the onboard Rubidium frequency standards is evaluated in comparison to ground-based hydrogen masers and shown to be well competitive with other GNSS satellite clocks. Precise orbit and clock solutions obtained in post-processing are used to study the presently achievable point positioning accuracy in COMPASS/BeiDou-2-only navigation. Finally, the benefit of triple-frequency measurements and extra-wide-lane ambiguity resolution is illustrated for relative positioning on a short baseline.


COMPASS BeiDou-2 QZSS Clock stability RAFS Ambiguity resolution Extra-wide-lane combination PPP Triple-frequency combination 



GNSS data from COMPASS/BeiDou-2 capable receivers where kindly provided by Curtin University of Technology (CUT), the Japanese Space Exploration Agency (JAXA) and Trimble Navigation Limited for the purpose of this study. Data from the KZN2 reference station are publicly made available by Kazan Federal University (KZU) within the frame of the Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS). We would also like to thank Nanyang University of Technology (NTU) and the University of New South Wales (UNSW) for hosting additional reference stations at their premises. Dedicated or updated firmware versions for the employed receivers have kindly been made available by Septentrio and Trimble which also offered intensive technical information and discussions. The authors gratefully acknowledge the support of all individuals and institutions that have supported this study.


  1. Chen HC, Huang YS, Chiang KW, Yang M, Rau RJ (2009) The performance comparison between GPS and BeiDou-2/COMPASS: a perspective from Asia. J Chin Inst Eng 32(5):679–689CrossRefGoogle Scholar
  2. Chen J, Wu B, Hu X, Zhou S, Cao Y, Wu X, Xing N (2012) Compass/Beidou: system status and initial service; IGS Workshop on GNSS Biases, 18–19 Jan 2012, University of Bern, Switzerland. URL:; last accessed 1 Mar 2012
  3. CSNO (2011) BeiDou navigation satellite system signal in space interface control document (Test Version), China satellite navigation office December 2011. URL; last accessed 2012/03/10
  4. de Wilde W, Boon F, Sleewaegen JM, Wilms F (2007) More Compass points—tracking China’s MEO satellite on a hardware receiver. Inside GNSS 2(5):44–48Google Scholar
  5. Dupuis RT, Lynch TJ, Vaccaro JR, Watts ET (2010) Rubidium frequency standard for the GPS IIF program and modifications for the RAFSMOD program; ION-GNSS-2010, 21–24 Sep. 2010, Portland, OR, pp 781–788Google Scholar
  6. Estey LH, Meertens CM (1999) TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solut 3(1):42–49CrossRefGoogle Scholar
  7. Flohrer T (2012) Classification of geosynchronous objects, GEN-DB-LOG-00086-OPS-GR, issue 14, Feb 2012. European Space Agency, ESA/ESOC, DarmstadtGoogle Scholar
  8. Gao GX, Chen A, Lo S, De Lorenzo D, Walter T, Enge P (2009) Compass-M1 broadcast codes in E2, E5b, and E6 frequency bands. IEEE J Sel Top in Signal Process 3(4):599–612. doi: 10.1109/JSTSP.2009.2025635 CrossRefGoogle Scholar
  9. Gao WG, Jiao WH, Xiao Y, Wang ML, Yuan HB (2011) An evaluation of the Beidou Time System (BDT). J Navig 64:S31–S39. doi: 10.1017/S0373463311000452 CrossRefGoogle Scholar
  10. Grelier T, Ghion A, Dantepal J, Ries L, DeLatour A., Issler J-L, Avila-Rodriguez JA, Wallner S, Hein GW (2007) Compass signal structure and first measurements, ION-GNSS-2007, Fort Worth, TX, September 2007, pp 3015–3024Google Scholar
  11. Han C, Yang Y, Cai Z (2011) BeiDou navigation satellite system and its timescales. Metrologia 48:S213–S218. doi: 10.1088/0026-1394/48/4/S13 CrossRefGoogle Scholar
  12. Hauschild A, Montenbruck O (2009) Kalman-filter-based GPS clock estimation for near real-time positioning. GPS Solut 13(3):173–182. doi: 10.1007/s10291-008-0110-3 CrossRefGoogle Scholar
  13. Hauschild A, Montenbruck O, Sleewaegen JM, Huisman L, Teunissen P (2012) Characterization of Compass M-1 signals. GPS Solut 16(1):117–126. doi: 10.1007/s10291-011-0210-3 CrossRefGoogle Scholar
  14. Inaba N, Matsumoto A, Hase H, Kogure S, Sawabe M, Terada K (2009) Design concept of quasi zenith satellite system. Acta Astronaut 65:1068–1075. doi: 10.1016/j.actaastro.2009.03.068 CrossRefGoogle Scholar
  15. Julien O, Cannon ME, Alves P, Lachapelle G (2004) Triple frequency ambiguity resolution using GPS/Galileo. Eur J Navig 2(2):51–57Google Scholar
  16. Kee C, Parkinson B (1994) Calibration of multipath errors on GPS pseudorange measurements, ION-GPS-1994, Salt Lake City, UT, 20-23 Sep. 1994, pp. 353–362Google Scholar
  17. Mallette LA, White J, Rochat P (2010) Space qualified frequency sources (clocks) for current and future GNSS applications. Position location and navigation symposium (PLANS), 2010, IEEE/ION, 4-6 May 2010, Indian Wells, CA, USA, pp 903–908. DOI  10.1109/PLANS.2010.5507225
  18. Misra P, Enge P (2011) Global positioning system—signals, measurements, and performance. Ganga-Jamuna Press, LincolnGoogle Scholar
  19. Montenbruck O, Hauschild A, Hessels U (2011a) Characterization of GPS/GIOVE sensor stations in the CONGO network. GPS Solut 15(3):193–205. doi: 10.1007/s10291-010-0182-8 CrossRefGoogle Scholar
  20. Montenbruck O, Hugentobler U, Dach R, Steigenberger P, Hauschild A (2011b) Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite. GPS Solut. doi: 10.1007/s10291-011-0232-x Google Scholar
  21. Montenbruck O, Steigenberger P, Schönemann E, Hauschild A, Hugentobler U, Dach R, Becker M (2011c) Flight characterization of new generation satellite clocks; ION-GNSS-2011, 21–23 Sep. 2011, Portland, OregonGoogle Scholar
  22. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  23. Rochat P (2010) Onboard atomic clocks in global navigation satellite system, SATW Congress 2010, 11 Nov. 2010, Zurich, Switzerland, Schweizerische Akademie der Technischen WissenschaftenGoogle Scholar
  24. Steigenberger P, Hauschild A, Montenbruck O, Rodriguez-Solano C, Hugentobler U (2012) QZS-1 Orbit and clock determination, ION-ITM-2012, 30 Jan. -1 Feb. 2012. Newport Beach, California, p 1265Google Scholar
  25. Teunissen PJG (1995) The least squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82. doi: 10.1007/BF00863419 CrossRefGoogle Scholar
  26. Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72(10):606–612. doi: 10.1007/s001900050199 CrossRefGoogle Scholar
  27. Thoelert S, Erker S, Furthner J, Meurer M (2010) Latest signal in space analysis of GPS IIF, COMPASS and QZSS. 5th ESA workshop on satellite navigation technologies, NAVITEC’2010, 8–10 Dec. 2010, Noordwijk, NetherlandsGoogle Scholar
  28. Tiberius C, Pany T, Eissfeller B, Joosten P, Verhagen S (2002) 0.99999999 confidence ambiguity resolution with GPS and Galileo. GPS Solut 6(1–2):96–99. doi: 10.1007/s10291-002-0022-6 CrossRefGoogle Scholar
  29. Vannicola F, Beard R, White J, Senior K, Kubik A, Wilson D (2010) GPS Block IIF rubidium frequency standard life test; ION-GNSS-2010, 21-24 Sep. 2010, Portland, OR, pp 812–819Google Scholar
  30. Waller P, Gonzalez F, Binda S, Sesia I, Tavella P, Hidalgo I, Tobias G (2009) Update on the in-orbit performances of GIOVE clocks. Proceedings EFTF 2009, pp 388–392Google Scholar
  31. Yang F, Chen W, Wang Y, Li P (2008) Laser retro-reflector arrays on the Compass satellites. Proceedings of the 16th international workshop on laser ranging, 12–17 Oct. 2008, Poznan, PolandGoogle Scholar
  32. Yang YX, Li JL, Xu JY, Tang J, Guo HR, He HB (2011) Contribution of the Compass satellite navigation system to global PNT users. Chin Sci Bull 56(26):2813–2819. doi: 10.1007/s11434-011-4627-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Oliver Montenbruck
    • 1
    Email author
  • André Hauschild
    • 1
  • Peter Steigenberger
    • 2
  • Urs Hugentobler
    • 2
  • Peter Teunissen
    • 3
  • Shinichi Nakamura
    • 4
  1. 1.German Space Operations CenterDeutsches Zentrum für Luft- und RaumfahrtWeßlingGermany
  2. 2.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany
  3. 3.Curtin University of TechnologyPerthAustralia
  4. 4.Japan Aerospace Exploration AgencyTsukubaJapan

Personalised recommendations