GPS Solutions

, Volume 17, Issue 2, pp 199–209 | Cite as

(Near-)real-time orbit determination for GNSS radio occultation processing

  • Oliver Montenbruck
  • André Hauschild
  • Yago Andres
  • Axel von Engeln
  • Christian Marquardt
Original Article


The processing of GPS radio occultation measurements for use in numerical weather predictions requires a precise orbit determination (POD) of the host satellite in near-real-time. Making use of data from the GRAS instrument on Metop-A, the performance of different GPS ephemeris products and processing concepts for near-real-time and real-time POD is compared. While previous analyses have focused on the achievable along-track velocity accuracy, this study contributes a systematic comparison of the resulting estimated bending angles. This enables a more rigorous trade-off of different orbit determination methodologies in relation to the end-user needs for atmospheric science products. It is demonstrated that near-real-time GPS orbit and clock products have reached a sufficient quality to determine the Metop-A along-track velocity with an accuracy of better than 0.05 mm/s that was formerly only accessible in post-processing. The resulting bending angles are shown to exhibit standard deviation and bias differences of less than 0.3 % compared with post-processed products up to altitudes of at least 40 km, which is notably better than 1 % accuracy typically assumed for numerical weather predictions in this height regime. Complementary to the analysis of ground-based processing schemes, the potential of autonomous on-board orbit determination is investigated for the first time. Using actual GRAS flight data, it is shown that a 0.5 m 3D rms position accuracy and a 0.2 mm/s along-track velocity accuracy can in fact be obtained in real-time with the currently available GPS broadcast ephemeris quality. Bending angles derived from the simulated real-time processing exhibit a minor performance degradation above tangent point heights of 40 km but negligible differences with respect to ground-based products below this altitude. Onboard orbit determination and, if desired, bending angle computation, can thus enable a further simplification of the ground segment in future radio occultation missions and contribute to reduced product latencies for radio occultation data assimilation in numerical weather predictions.


GRAS Metop Radio occultation Precise orbit determination Bending angle Atmosphere Real-time processing 



The study makes use of GPS orbit and clock products provided by Center for Orbit Determination in Europe (CODE) based on data from the global GPS monitoring network of the International GNSS Service (IGS). The support of both institutions is gratefully acknowledged. The NAPEOS software as well as the GSN near-real-time GPS orbit and clock data are products of the European Space Operations Centre (ESOC) and used by EUMETSAT under license of the European Space Agency (ESA). Finally, the authors would like to thank ECMWF for providing the meteorological data for validation of the bending angle products.


  1. Andres Y, Righetti PL, Marquardt C (2010) Near real-time precise orbit determination for radio occultation and altimetry missions, ION-GNSS-2010 conference, PortlandGoogle Scholar
  2. Anlauf H, Pingel D, Rhodin A (2011) Assimilation of GPS radio occultation data at DWD. Atmos Meas Tech Discuss 4:1533–1554. doi: 10.5194/amtd-4-1533-2011 CrossRefGoogle Scholar
  3. Anthes RA (2011) Exploring earth’s atmosphere with radio occultation: contributions to weather, climate and space weather. Atmos Meas Tech 4:1077–1103. doi: 10.5194/amt-4-1077-2011 CrossRefGoogle Scholar
  4. Ao CO (2009) Atmospheric sensing using GNSS occultations, chap. 15. In: Gleason S, Gebre-Egziabher D (eds) GNSS applications and methods. Artech House, NorwoodGoogle Scholar
  5. Bar-Sever Y, Bell B, Dorsey A, Srinivasan J (2003) Space applications of the NASA global differential GPS system, ION-GPS-2003 conference, PortlandGoogle Scholar
  6. Bertiger W, Wu S-C (1996) Single frequency GPS orbit determination for low earth orbitors, ION-NTM-1996, Santa MonicaGoogle Scholar
  7. Bonnedal M, Christensen J, Carlström A, Berg A (2010) Metop-GRAS in-orbit instrument performance. GPS Solut 14(1):109–120. doi: 10.1007/s10291-009-0142-3 CrossRefGoogle Scholar
  8. Culverwell I (2011) Radio occultation processing package (ROPP)—an overview, EUMETSAT, SAF/GRAS/METO/UG/ROPP/001, version 5.0.
  9. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365. doi: 10.1007/s00190-008-0281-2 CrossRefGoogle Scholar
  10. Dow JM, Neilan RE, Rizos C (2009) The International GNSS service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  11. GRAS-SAG (1998) The GRAS instrument on Metop—report of the GRAS-SAG, VR/3021/PI, EPS/MIS/TN/97805, version 1.2, 4 May 1998Google Scholar
  12. Hauschild A, Montenbruck O (2008) Real-time clock estimation for precise orbit determination of LEO-satellites, ION-GNSS-2008, Savannah (2008)Google Scholar
  13. Healy S, Hamrud M, Fouilloux A, Rennie M (2012) Use of two-dimensional operators when assimilating GPS-RO measurements. In: IROWG 2nd workshop, Estes Park.
  14. Hoaglin D, Mosteller F, Tukey J (1983) Understanding robust and exploratory data analysis. Wiley, New YorkGoogle Scholar
  15. Jensen AS, Lohmann MS, Benzon HH, Nielsen AS (2003) Full spectrum inversion of radio occultation signals. Radio Sci 38(3):1040. doi: 10.1029/2002RS002763 CrossRefGoogle Scholar
  16. Klaes K, Cohen M, Buhler Y, Schlüssel P, Munro R, Luntama J-P, von Engeln A, O’Clerigh E, Bonekamp H, Ackermann J, Schmetz J (2007) An introduction to the EUMETSAT polar system. Bull Am Meteorol Soc 88(7):1085–1096. doi: 10.1175/BAMS-88-7-1085 CrossRefGoogle Scholar
  17. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102(D19):23429–23465. doi: 10.1029/97JD01569 CrossRefGoogle Scholar
  18. Loiselet M, Stricker N, Menard Y, Luntama JP (2000) GRAS—MetOp’s GPS-based atmospheric sounder. ESA Bull 102:38–44Google Scholar
  19. Luntama J-P, Kirchengast G, Borsche M, Foelsche U, Steiner A, Healy S, von Engeln A, O’Clerigh E, Marquardt C (2008) Prospects of the EPS GRAS mission for operational atmospheric applications. Bull Am Meteorol Soci 89(12):1863–1875CrossRefGoogle Scholar
  20. Marquardt C (2009) GRAS offline bending angle validation, presentation at 24th GRAS Science Advisory Group Meeting, EUMETSAT, DarmstadtGoogle Scholar
  21. Martinez Fadrique FM, Agueda Mate A, Sancho Rodriguez-Portugal F (2007) GRAS NRT precise orbit determination: operational experience. In: 20th international symposium on space flight dynamics, AnnapolisGoogle Scholar
  22. Montenbruck O (2007) GRAS2Rnx—a RINEX generation tool for the GRAS instrument; GRAS-DLR-TN-0010, issue 1.1 DLR/GSOC, OberpfaffenhofenGoogle Scholar
  23. Montenbruck O, Ramos-Bosch P (2008) Precision real-time navigation of LEO satellites using Global Positioning System measurements. GPS Solut 12(3):187–198. doi: 10.1007/s10291-007-0080-x CrossRefGoogle Scholar
  24. Montenbruck O, van Helleputte T, Kroes R, Gill E (2005) Reduced dynamic orbit determination using GPS code and carrier measurements. Aerosp Sci Technol 9(3):261–271. doi: 101016/jast200501003 CrossRefGoogle Scholar
  25. Montenbruck O, Andres Y, Bock H, van Helleputte T, van den IJssel J, Loiselet M, Marquardt C, Silvestrin P, Visser P, Yoon Y (2008) Tracking and orbit determination performance of the GRAS instrument on Metop-A. GPS Solut 12(4):289–299. doi: 10.1007/s10291-008-0091-2 CrossRefGoogle Scholar
  26. Montenbruck O, Swatschina P, Markgraf M, Santandrea S, Naudet J, Tilmans E (2011) Precision navigation using a low-cost GPS receiver. GPS Solut. doi: 10.1007/s10291-011-0252-6
  27. Pisacane G (2002) Metop/GRAS NRT POD requirements, EUM.EPS.GSE.FAX.02.109 25 EUMETSATGoogle Scholar
  28. Poli P, Healy SB, Dee DP (2010) Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis. Q J Roy Meteorol Soc 136(653):1972–1990. doi: 10.1002/qj.722 CrossRefGoogle Scholar
  29. Roselló Gulasch J, Silvestrin P, Aguirre M, Massotti L (2009) Navigation needs for ESA’s earth observation missions, IAA-B7-1401. In: 7th IAA symposium on small satellite for earth observation, BerlinGoogle Scholar
  30. Silvestrin P, Bagge R, Bonnedal M, Carlström A, Christensen J, Hägg M, Lindgren T, Zangerl F (2000) Space-borne GNSS radio occultation instrumentation for operational applications. In: Proceedings of the ION-GPS-2000, Salt Lake City, pp 872–880Google Scholar
  31. Springer T (2009) NAPEOS mathematical models and algorithms. DOPS-SYS-TN-0100-OPS-GN, ESA/ESOC, issue 1.0.
  32. von Engeln A, Healy S, Marquardt Ch, Andres Y, Sancho F (2009) Validation of operational GRAS radio occultation data. Geophys Res Lett 36:L17809. doi: 10.1029/2009GL039968 CrossRefGoogle Scholar
  33. von Engeln A, Andres Y, Marquardt C, Sancho F (2011) GRAS radio occultation on-board of Metop. Adv Space Res 47:336–347. doi: 10.1016/j.asr.2010.07.028 CrossRefGoogle Scholar
  34. Wermuth M, Montenbruck O, van Helleputte T (2010) GPS high precision orbit determination software tools (GHOST). In: Proceedings of the 4th international conference on astrodynamics tools and techniques, Madrid, ESA WPP-308Google Scholar
  35. Yunck TP (2003) Spaceborne GPS for POD and earth science. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Berlin, pp 42–51CrossRefGoogle Scholar
  36. Zandbergen R, Ballereau A, Rojo E, Andres Y, Romero I, Garcia C, Dow J (2006) GRAS GSN near-real time data processing. IGS workshop, DarmstadtGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Oliver Montenbruck
    • 1
  • André Hauschild
    • 1
  • Yago Andres
    • 2
  • Axel von Engeln
    • 2
  • Christian Marquardt
    • 2
  1. 1.German Space Operations CenterDeutsches Zentrum für Luft- und RaumfahrtWeßlingGermany
  2. 2.EUMETSATDarmstadtGermany

Personalised recommendations