GPS Solutions

, Volume 16, Issue 4, pp 483–494 | Cite as

IGS08: the IGS realization of ITRF2008

  • P. Rebischung
  • J. Griffiths
  • J. Ray
  • R. Schmid
  • X. Collilieux
  • B. Garayt
Original Article


On April 17, 2011, the International GNSS Service (IGS) stopped using the IGS05 reference frame and adopted a new one, called IGS08, as the basis of its products. The latter was derived from the latest release of the International Terrestrial Reference Frame (ITRF2008). However, the simultaneous adoption of a new set of antenna phase center calibrations by the IGS required slight adaptations of ITRF2008 positions for 65 of the 232 IGS08 stations. The impact of the switch from IGS05 to IGS08 on GNSS station coordinates was twofold: in addition to a global transformation due to the frame change from ITRF2005 to ITRF2008, many station coordinates underwent small shifts due to antenna calibration updates, which need to be accounted for in any comparison or alignment of an IGS05-consistent solution to IGS08. Because the heterogeneous distribution of the IGS08 network makes it sub-optimal for the alignment of global frames, a smaller well-distributed sub-network was additionally designed and designated as the IGS08 core network. Only 2 months after their implementation, both the full IGS08 network and the IGS08 core network already strongly suffer from the loss of many reference stations. To avoid a future crisis situation, updates of IGS08 will certainly have to be considered before the next ITRF release.


IGS GNSS ITRF Terrestrial reference frame Tracking network Phase center calibration 



We would like to thank T. van Dam (University of Luxembourg) who supplied the loading deformation model used in this study. All IGS ACs are specially acknowledged for their fundamental contribution to the elaboration of IGS08 and igs08.atx. The IGS station operators are also thanked for their commitment to providing invaluable data.


  1. Altamimi Z, Collilieux X (2009) IGS contribution to ITRF. J Geod 83(3–4):375–383. doi: 10.1007/s00190-008-0294-x CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  3. Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107(B7):2145. doi: 10.1029/2001JB000570 Google Scholar
  4. Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304. doi: 10.1029/2005GL025546 CrossRefGoogle Scholar
  5. Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683. doi: 10.1007/s00190-007-0135-3 CrossRefGoogle Scholar
  6. Collilieux X, Altamimi Z, Coulot D, Ray J, Sillard P (2007) Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J Geophys Res 112:B12403. doi: 10.1029/2007JB004933 CrossRefGoogle Scholar
  7. Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res 114:B04402. doi: 10.1029/2008JB005727 CrossRefGoogle Scholar
  8. Collilieux X, Métivier L, Altamimi Z, van Dam T, Ray J (2011a) Quality assessment of GPS reprocessed terrestrial reference frame. GPS Solut 15(3):219–231. doi: 10.1007/s10291-010-0184-6 CrossRefGoogle Scholar
  9. Collilieux X, van Dam T, Ray J, Coulot D, Métivier L, Altamimi Z (2011b) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod. doi: 10.1007/s00190-011-0487-6
  10. Coulot D, Pollet A, Collilieux X, Berio P (2010) Global optimization of core station networks for space geodesy: application to the referencing of the SLR EOP with respect to ITRF. J Geod 84(1):31–50. doi: 10.1007/s00190-009-0342-1 CrossRefGoogle Scholar
  11. Dach R, Beutler G, Bock H, Fridez P, Gäde A, Hugentobler U, Jäggi A, Meindl M, Mervart L, Prange L, Schaer S, Springer T, Urschl C, Walser P (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, SwitzerlandGoogle Scholar
  12. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  13. Ferland R (2004) Reference frame working group technical report. In: Gowey K, Neilan R, Moore A (eds) IGS 2001–2002 technical reports, Jet Propulsion Laboratory, pp 25–33Google Scholar
  14. Ferland R (2010) Description of IGS submission to ITRF2008. Available at
  15. Ferland R, Piraszewski M (2009) The IGS-combined station coordinates, earth rotation parameters and apparent geocenter. J Geod 83(3–4):385–392. doi: 10.1007/s00190-008-0295-9 CrossRefGoogle Scholar
  16. Griffiths J, Gendt G, Nischan T, Ray J (2009) Assessment of the orbits from the 1st IGS reprocessing campaign. Eos Trans AGU 90(52), Fall Meet Suppl, Abstract G13A-04Google Scholar
  17. Kouba J, Ray J, Watkins MM (1998) IGS reference frame realization. In: 1998 IGS Analysis Center workshop proceedings, European Space Operations Center, Darmstadt, Germany, pp 139–171Google Scholar
  18. Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements. GPS Solut 8(4):251–266. doi: 10.1007/s10291-004-0110-x CrossRefGoogle Scholar
  19. Ray JR, Rebischung P, Schmid R (2011) Dependence of IGS products on the ITRF datum. In: Proceedings of IAG Commission 1 symposium on reference frames for applications in geosciences, Marne-la-Vallée, France (in press)Google Scholar
  20. Rothacher M, Mader G (1996) Combination of antenna phase center offsets and variations. IGS Central BureauGoogle Scholar
  21. Saastamoinen JH (1973) Contributions to the theory of atmospheric refraction. Bull Géod 105(1):279–298. doi: 10.1007/BF02521844 CrossRefGoogle Scholar
  22. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  23. Springer TA (2009) NAPEOS—mathematical models and algorithms. ESA/ESOC Technical Note DOPS-SYS-TN-0100-OPS-GN, issue 1.0Google Scholar
  24. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111:B050402. doi: 10.1029/2005JB003747 CrossRefGoogle Scholar
  25. Wöppelmann G, Martin Miguez B, Bouin M-N, Altamimi Z (2007) Geocentric sea-level trend estimates from GPS analyses at relevant tide-gauges world-wide. Global Planet Change 57(3–4):396–406. doi: 10.1016/j.gloplacha.2007.02.002 CrossRefGoogle Scholar
  26. Zhu SY, Massmann F-H, Yu Y, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76(11–12):668–672. doi: 10.1007/s00190-002-0294-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • P. Rebischung
    • 1
  • J. Griffiths
    • 2
  • J. Ray
    • 2
  • R. Schmid
    • 3
  • X. Collilieux
    • 1
  • B. Garayt
    • 4
  1. 1.Institut Géographique National/LAREG and GRGSMarne-la-Vallée Cedex 2France
  2. 2.NOAA National Geodetic SurveySilver SpringUSA
  3. 3.Institut für Astronomische und Physikalische Geodäsie, Technische Universität MünchenMunichGermany
  4. 4.Institut Géographique National/SGN and GRGSSaint-Mandé CedexFrance

Personalised recommendations