GPS Solutions

, Volume 16, Issue 1, pp 127–133 | Cite as

Signal, orbit and attitude analysis of Japan’s first QZSS satellite Michibiki

  • André HauschildEmail author
  • Peter Steigenberger
  • Carlos Rodriguez-Solano
GNSS In Progress


Results are presented for Michibiki, the first satellite of Japan’s Quasi-Zenith Satellite System. Measurements for the analysis have been collected with five GNSS tracking stations in the service area of QZSS, which track five of the six signals transmitted by the satellite. The analysis discusses the carrier-to-noise density ratio as measured by the receiver for the different signals. Pseudorange noise and multipath are evaluated with dual-frequency and triple-frequency combinations. QZSS uses two separate antennas for signal transmission, which allows the determination of the yaw orientation of the spacecraft. Yaw angle estimation results for an attitude mode switch from yaw-steering to orbit-normal orientation are presented. Estimates of differential code biases between QZSS and GPS observations are shown in the analysis of the orbit determination results for Michibiki. The estimated orbits are compared with the broadcast ephemerides, and their accuracy is assessed with overlap comparisons.


QZSS Michibiki QZS-1 CONGO Multipath analysis Yaw attitude estimation Orbit determination 


  1. Bar-Sever YE (1996) A new model for GPS yaw attitude. J Geodesy 70(11):714–723. doi: 10.1007/BF00867149 CrossRefGoogle Scholar
  2. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for Geodynamics (IGS): theory and initial results. Manuscripta Geodaetica 19:367–386Google Scholar
  3. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, BernGoogle Scholar
  4. Hauschild A, Steigenberger P, Rodriguez-Solano C (2011) QZS-1 yaw attitude estimation based on measurements from the CONGO network. ION GNSS Conference, 20–23 Sep 2011, PortlandGoogle Scholar
  5. Inaba N, Matsumoto A, Hase H, Kogure S, Sawabe M, Terada K (2009) Design concept of quasi zenith satellite system. Acta Astronautica 65(7–8):1068–1075. doi: 10.1016/j.actaastro.2009.03.068 CrossRefGoogle Scholar
  6. Kee C, Parkinson B (1994) Calibration of multipath errors on GPS pseudorange measurements. In: Proceedings of the 7th international technical meeting of the satellite division of the institute of navigation, Salt Lake City, 20–23 Sep 1994, pp 353–362Google Scholar
  7. Kishimoto M, Noda H, Kogure S, Sawabe M, Terada K (2011) QZSS on orbit technical verification results. ION GNSS Conference, 20–23 Sep 2011, PortlandGoogle Scholar
  8. Montenbruck O, Hauschild A, Hessels U (2011a) Characterization of GPS/GIOVE sensor stations in the CONGO network. GPS Solut 15(3):193–205. doi: 10.1007/s10291-010-0182-8 CrossRefGoogle Scholar
  9. Montenbruck O, Hugentobler U, Dach R., Steigenberger P, Hauschild A (2011b) Apparent clock variations of the block IIF-1 (SVN62) GPS satellite. GPS Solut. doi:  10.1007/s10291-011-0232-x
  10. Saito M, Sato Y, Miya M, Omura Y, Shima M, Yoshino T, Asari K (2011) Centimeter-class augmentation system utilizing quasi-zenith satellite. ION GNSS Conference, 20–23 Sep 2011, PortlandGoogle Scholar
  11. Steigenberger P, Hugentobler U, Montenbruck O, Hauschild A (2011) Precise orbit determination of GIOVE-B based on the CONGO Network. J Geodesy 85(6):357–365. doi: 10.1007/s00190-011-0443-5 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • André Hauschild
    • 1
  • Peter Steigenberger
    • 2
  • Carlos Rodriguez-Solano
    • 2
  1. 1.German Space Operations CenterDeutsches Zentrum für Luft-und Raumfahrt (DLR)WesslingGermany
  2. 2.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany

Personalised recommendations